論文の概要: READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input
Noises
- arxiv url: http://arxiv.org/abs/2302.07324v2
- Date: Thu, 25 May 2023 01:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 20:56:25.712854
- Title: READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input
Noises
- Title(参考訳): readin: リアルで多様な入力ノイズを持つ中国のマルチタスクベンチマーク
- Authors: Chenglei Si, Zhengyan Zhang, Yingfa Chen, Xiaozhi Wang, Zhiyuan Liu,
Maosong Sun
- Abstract要約: 我々は、Realistic and Diverse Input Noisesを用いた中国のマルチタスクベンチマークREADINを構築した。
READINには4つの多様なタスクとアノテータが含まれており、Pinyin入力と音声入力という2つの一般的な中国語入力方式で元のテストデータを再入力するよう要求する。
我々は、強化された事前訓練された言語モデルと、堅牢なトレーニング手法を用いて実験を行い、これらのモデルがREADINに顕著な性能低下を被ることがしばしば見いだされた。
- 参考スコア(独自算出の注目度): 87.70001456418504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many real-world applications, the user-generated inputs usually contain
various noises due to speech recognition errors caused by linguistic
variations1 or typographical errors (typos). Thus, it is crucial to test model
performance on data with realistic input noises to ensure robustness and
fairness. However, little study has been done to construct such benchmarks for
Chinese, where various language-specific input noises happen in the real world.
In order to fill this important gap, we construct READIN: a Chinese multi-task
benchmark with REalistic And Diverse Input Noises. READIN contains four diverse
tasks and requests annotators to re-enter the original test data with two
commonly used Chinese input methods: Pinyin input and speech input. We designed
our annotation pipeline to maximize diversity, for example by instructing the
annotators to use diverse input method editors (IMEs) for keyboard noises and
recruiting speakers from diverse dialectical groups for speech noises. We
experiment with a series of strong pretrained language models as well as robust
training methods, we find that these models often suffer significant
performance drops on READIN even with robustness methods like data
augmentation. As the first large-scale attempt in creating a benchmark with
noises geared towards user-generated inputs, we believe that READIN serves as
an important complement to existing Chinese NLP benchmarks. The source code and
dataset can be obtained from https://github.com/thunlp/READIN.
- Abstract(参考訳): 多くの実世界のアプリケーションでは、利用者が生成する入力は、通常、言語的変異1またはタイポグラフィー的誤り(typos)によって引き起こされる音声認識エラーによる様々なノイズを含む。
したがって、堅牢性と公平性を確保するために、現実的な入力ノイズを持つデータでモデル性能をテストすることが不可欠である。
しかし、言語固有の入力ノイズが現実世界で発生する中国語のベンチマークを構築するための研究はほとんど行われていない。
この重要なギャップを埋めるために、Realistic And Diverse Input Noisesを用いた中国のマルチタスクベンチマークREADINを構築した。
READINには4つの多様なタスクとアノテータが含まれており、Pinyin入力と音声入力という2つの一般的な中国語入力方式で元のテストデータを再入力する。
例えば、キーボードノイズに多様な入力方法エディタ(IME)を使用するようにアノテータに指示し、音声ノイズに様々な方言グループから話者を募集することで、多様性を最大化するアノテーションパイプラインを設計した。
強固な事前学習された言語モデルとロバストなトレーニング手法を実験した結果、データ拡張のような堅牢性のある方法であっても、これらのモデルはしばしばリードインの大幅なパフォーマンス低下に苦しむことが分かりました。
ユーザ生成入力を指向したノイズのあるベンチマークを作成するための最初の大規模な試みとして、READINが既存の中国のNLPベンチマークの重要な補完となると信じている。
ソースコードとデータセットはhttps://github.com/thunlp/READINから取得できる。
関連論文リスト
- Take the Hint: Improving Arabic Diacritization with
Partially-Diacritized Text [4.863310073296471]
本稿では,任意のダイアクリティカルティクスを効果的にサポートするマルチソースモデルである2SDiacを提案する。
また、ランダムマスキングのレベルが異なる入力において、与えられたダイアクリティカルを活用できるトレーニングスキームであるガイドドラーニングを導入する。
論文 参考訳(メタデータ) (2023-06-06T10:18:17Z) - Robustification of Multilingual Language Models to Real-world Noise with
Robust Contrastive Pretraining [14.087882550564169]
ノイズの多いデータに基づいてニューラルモデルのロバスト性を評価し,改良は英語に限られていることを示唆する。
事前訓練された多言語モデルの性能をベンチマークするために、5つの言語と4つのNLPタスクをカバーするノイズの多いデータセットを構築した。
本稿では,多言語事前学習モデルのゼロショット言語間ロバスト性を高めるために,ロバストコントラスト事前学習(RCP)を提案する。
論文 参考訳(メタデータ) (2022-10-10T15:40:43Z) - Intent Classification Using Pre-Trained Embeddings For Low Resource
Languages [67.40810139354028]
言語固有の音声認識に依存しない音声理解システムを構築することは、言語処理において重要でない問題である。
本稿では,事前学習した音響モデルを用いて,低資源シナリオにおける音声言語理解を実現するための比較研究を提案する。
私たちは、ハイ、ミディアム、低リソースシナリオをシミュレートするために、それぞれ異なるデータサイズを持つ英語、Sinhala、Tamilの3つの異なる言語で実験を行います。
論文 参考訳(メタデータ) (2021-10-18T13:06:59Z) - Understanding Model Robustness to User-generated Noisy Texts [2.958690090551675]
NLPでは、スペルエラーなどの自然発生ノイズによってモデル性能が劣化することが多い。
本稿では,文法的誤り訂正コーパスから統計的に誤りをモデル化する。
論文 参考訳(メタデータ) (2021-10-14T14:54:52Z) - Learning from Multiple Noisy Augmented Data Sets for Better
Cross-Lingual Spoken Language Understanding [69.40915115518523]
トレーニングデータの欠如は、低リソース言語への音声言語理解(SLU)をスケールアウトする上で大きな課題となる。
低リソースターゲット言語でのトレーニングデータを合成するために、様々なデータ拡張手法が提案されている。
本稿では,拡張データにおけるノイズの軽減に焦点をあてる。
論文 参考訳(メタデータ) (2021-09-03T15:44:15Z) - FewCLUE: A Chinese Few-shot Learning Evaluation Benchmark [8.158067688043554]
この研究は、中国初の総合的な小サンプル評価ベンチマークである中国語 Few-shot Learning Evaluation Benchmark (FewCLUE) を紹介した。
1つのタスクに最大2万のサンプルを追加するラベルなしのトレーニングが提供され、ラベルなしのサンプルを使用する方法を改善することができる。
次に、最先端の複数ショット学習手法を実装し、その性能をFewCLUEベンチマークの微調整およびゼロショット学習方式と比較する。
論文 参考訳(メタデータ) (2021-07-15T17:51:25Z) - SHUOWEN-JIEZI: Linguistically Informed Tokenizers For Chinese Language
Model Pretraining [48.880840711568425]
事前学習された言語モデルの中国語トークン化に対する3つの要因の影響について検討する。
本稿では,発音に基づくトークン化システムであるSHUOWEN (Talk Word) と,グリフに基づくトークン化システムであるJIEZI (Solve Character) の3種類のトークン化手法を提案する。
SHUOWENとJIEZIは、一般的に従来のシングル文字トークンよりも優れた性能を持つ。
論文 参考訳(メタデータ) (2021-06-01T11:20:02Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
言語モデル(LM)は、事実の知識を捉えるのに驚くほど成功した。
しかし、LMの実際の表現能力の研究は、ほぼ間違いなく英語で行われている。
我々は23の語型的多様言語に対するクローゼスタイルプローブのベンチマークを作成する。
論文 参考訳(メタデータ) (2020-10-13T05:29:56Z) - One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech [3.42658286826597]
本稿では,文脈パラメータ生成のメタラーニング概念を用いた多言語音声合成手法を提案する。
本モデルでは,言語間で効率的に情報を共有できることが示され,主観的評価テストにより,ベースラインよりも自然な,正確なコードスイッチング音声を生成する。
論文 参考訳(メタデータ) (2020-08-03T10:43:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。