Semi-Supervised Visual Tracking of Marine Animals using Autonomous
Underwater Vehicles
- URL: http://arxiv.org/abs/2302.07344v1
- Date: Tue, 14 Feb 2023 21:08:52 GMT
- Title: Semi-Supervised Visual Tracking of Marine Animals using Autonomous
Underwater Vehicles
- Authors: Levi Cai and Nathan E. McGuire and Roger Hanlon and T. Aran Mooney and
Yogesh Girdhar
- Abstract summary: In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their surrounding ecosystem.
Recently, autonomous underwater vehicles equipped with cameras and embedded computers with GPU capabilities are being developed for a variety of applications.
Semi-supervised tracking algorithms may offer alternative tracking solutions because they require less data than fully-supervised counterparts.
- Score: 0.40498500266986387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-situ visual observations of marine organisms is crucial to developing
behavioural understandings and their relations to their surrounding ecosystem.
Typically, these observations are collected via divers, tags, and
remotely-operated or human-piloted vehicles. Recently, however, autonomous
underwater vehicles equipped with cameras and embedded computers with GPU
capabilities are being developed for a variety of applications, and in
particular, can be used to supplement these existing data collection mechanisms
where human operation or tags are more difficult. Existing approaches have
focused on using fully-supervised tracking methods, but labelled data for many
underwater species are severely lacking. Semi-supervised trackers may offer
alternative tracking solutions because they require less data than
fully-supervised counterparts. However, because there are not existing
realistic underwater tracking datasets, the performance of semi-supervised
tracking algorithms in the marine domain is not well understood. To better
evaluate their performance and utility, in this paper we provide (1) a novel
dataset specific to marine animals located at http://warp.whoi.edu/vmat/, (2)
an evaluation of state-of-the-art semi-supervised algorithms in the context of
underwater animal tracking, and (3) an evaluation of real-world performance
through demonstrations using a semi-supervised algorithm on-board an autonomous
underwater vehicle to track marine animals in the wild.
Related papers
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - Whale Detection Enhancement through Synthetic Satellite Images [13.842008598751445]
We show that we can achieve a 15% performance boost on whale detection compared to using the real data alone for training.
We open source the code of the simulation platform SeaDroneSim2 and the dataset generated through it.
arXiv Detail & Related papers (2023-08-15T13:35:29Z) - Weakly supervised marine animal detection from remote sensing images
using vector-quantized variational autoencoder [4.812718493682454]
This paper studies a reconstruction-based approach for weakly-supervised animal detection from aerial images in marine environments.
An anomaly detection framework computes metrics directly on the input space, enhancing interpretability and anomaly localization.
Our framework offers improved interpretability and localization of anomalies, providing valuable insights for monitoring marine ecosystems.
arXiv Detail & Related papers (2023-07-13T12:26:27Z) - Underwater Object Tracker: UOSTrack for Marine Organism Grasping of
Underwater Vehicles [7.494346355005127]
This paper proposes Underwater OSTrack, which consists of underwater image and open-air sequence hybrid training (UOHT) and motion-based post-processing (MBPP)
UOSTrack achieves an average performance improvement of 4.41% and 7.98% maximum compared to state-of-the-art methods on various benchmarks.
arXiv Detail & Related papers (2023-01-04T08:22:34Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
We propose an efficient computer vision- and deep learning-based method for the detection of biological behaviours in videos.
TempNet uses an encoder bridge and residual blocks to maintain model performance with a two-staged, spatial, then temporal, encoder.
We demonstrate its application to the detection of sablefish (Anoplopoma fimbria) startle events.
arXiv Detail & Related papers (2022-11-17T23:55:12Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and
Survey [1.9249287163937976]
Deep learning (DL) is a cutting-edge AI technology that has demonstrated unprecedented performance in analysing visual data.
In this paper, we provide a tutorial that covers the key concepts of DL, which help the reader grasp a high-level understanding of how DL works.
The tutorial also explains a step-by-step procedure on how DL algorithms should be developed for challenging applications such as underwater fish monitoring.
arXiv Detail & Related papers (2022-06-11T01:59:54Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
We present an extensive dataset of free-running cheetahs in the wild, called AcinoSet.
The dataset contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames.
The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided.
arXiv Detail & Related papers (2021-03-24T15:54:11Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
This paper focuses on the identification of prey handling activity in seals.
Data taken into consideration are streams of 3D accelerometers and depth sensors values collected by devices attached directly on seals.
We propose an automatic model based on Machine Learning (ML) algorithms.
arXiv Detail & Related papers (2020-02-10T15:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.