論文の概要: Extensible Motion-based Identification of XR Users using Non-Specific
Motion Data
- arxiv url: http://arxiv.org/abs/2302.07517v2
- Date: Mon, 3 Apr 2023 09:46:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 21:31:52.310418
- Title: Extensible Motion-based Identification of XR Users using Non-Specific
Motion Data
- Title(参考訳): 非特定運動データを用いた拡張可能なXRユーザ同定
- Authors: Christian Schell, Konstantin Kobs, Tamara Fernando, Andreas Hotho,
Marc Erich Latoschik
- Abstract要約: ディープ・メトリック・ラーニングを活用する埋め込み型アプローチを提案する。
私たちはこのモデルを、VRゲームHalf-Life: Alyx'をプレイするユーザのデータセットでトレーニングします。
- 参考スコア(独自算出の注目度): 10.364105114379527
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we combine the strengths of distance-based and
classification-based approaches for the task of identifying extended reality
users by their movements. For this we present an embedding-based approach that
leverages deep metric learning. We train the model on a dataset of users
playing the VR game ``Half-Life: Alyx'' and conduct multiple experiments and
analyses using a state of the art classification-based model as baseline. The
results show that the embedding-based method 1) is able to identify new users
from non-specific movements using only a few minutes of enrollment data, 2) can
enroll new users within seconds, while retraining the baseline approach takes
almost a day, 3) is more reliable than the baseline approach when only little
enrollment data is available, 4) can be used to identify new users from another
dataset recorded with different VR devices.
Altogether, our solution is a foundation for easily extensible XR user
identification systems, applicable to a wide range of user motions. It also
paves the way for production-ready models that could be used by XR
practitioners without the requirements of expertise, hardware, or data for
training deep learning models.
- Abstract(参考訳): 本稿では,距離ベースと分類に基づくアプローチの強みを組み合わせることで,拡張現実ユーザの動きを識別する。
そこで我々は,深層メトリック学習を活用した組込み型アプローチを提案する。
われわれは,VRゲーム‘Half-Life: Alyx’’をプレイするユーザのデータセット上でモデルをトレーニングし,アート分類ベースモデルの状態をベースラインとして,複数の実験と分析を行う。
その結果,埋め込み型手法が有効であった。
1) 数分間の登録データを使用して,非特定動作から新規ユーザを識別できる。
2)新しいユーザーを数秒以内に登録できるが、ベースラインアプローチの再トレーニングにはおよそ1日かかる。
3) 登録データが少ない場合にのみ,ベースラインアプローチよりも信頼性が高い。
4) 異なるVRデバイスで記録された別のデータセットから新しいユーザーを特定するために使用することができる。
全体として、我々のソリューションは、拡張可能なxrユーザ識別システムの基礎であり、幅広いユーザ動作に適用できる。
また、専門知識やハードウェア、あるいはディープラーニングモデルをトレーニングするためのデータを必要としない、XR実践者が使用可能なプロダクション対応モデルの道を開く。
関連論文リスト
- A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
現実世界のシステムでは、ほとんどのユーザーはほんの一握りのアイテムしか扱わないが、ほとんどのアイテムは滅多に消費されない。
これら2つの課題は、ロングテールユーザーとロングテールアイテムの課題として知られ、しばしば既存のシークエンシャルレコメンデーションシステムに困難をもたらす。
本稿では,これらの課題に対処するため,Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR)を提案する。
論文 参考訳(メタデータ) (2024-05-31T07:24:42Z) - Generalization of Fitness Exercise Recognition from Doppler Measurements
by Domain-adaption and Few-Shot Learning [12.238586191793997]
以前の研究では、未修正の市販オフザシェルフスマートフォンを使用して、全身運動を認識するモバイルアプリケーションを開発した。
このような実験室環境のトレーニングされたモデルを現実的なアプリケーションのバリエーションに適用することは、パフォーマンスを著しく低下させます。
本稿では、フィットネスエクササイズの制御および制御されていないサブセットを持つデータベースを提案する。
論文 参考訳(メタデータ) (2023-11-20T16:40:48Z) - Comparison of Data Representations and Machine Learning Architectures
for User Identification on Arbitrary Motion Sequences [8.967985264567217]
本稿では,頭部と手の動きの任意のシーケンスに基づいて,異なる機械学習手法を用いてユーザを識別する。
すべてのコードを公開して、将来の作業のベースラインを提供しています。
このモデルは、150秒以内の精度で、34人の被験者のどれかを正確に識別する。
論文 参考訳(メタデータ) (2022-10-02T14:12:10Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
本稿では,X-Learnerという表現学習フレームワークを提案する。
X-Learnerは、様々なソースによって管理される複数の視覚タスクの普遍的な特徴を学習する。
X-Learnerは、追加のアノテーションやモダリティ、計算コストを使わずに、様々なタスクで強力なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-16T17:23:26Z) - SSSE: Efficiently Erasing Samples from Trained Machine Learning Models [103.43466657962242]
サンプル消去のための効率的かつ効率的なアルゴリズムSSSEを提案する。
ある場合、SSSEは、許可されたデータだけで新しいモデルをスクラッチからトレーニングする最適な、しかし実用的でない金の標準と同様に、サンプルをほぼ消去することができる。
論文 参考訳(メタデータ) (2021-07-08T14:17:24Z) - Opportunistic Federated Learning: An Exploration of Egocentric
Collaboration for Pervasive Computing Applications [20.61034787249924]
我々は、異なるユーザに属する個々のデバイスが堅牢なモデルを学ぶための新しいアプローチ、機会論的フェデレーションラーニングを定義する。
本稿では,このようなアプローチの実現可能性と限界を考察し,出会い型ペアワイド協調学習を支援する枠組みを策定する。
論文 参考訳(メタデータ) (2021-03-24T15:30:21Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
被験者やデバイス間で共有される共通情報を抽出する不変特徴学習フレームワーク(IFLF)を提案する。
実験により、IFLFは、一般的なオープンデータセットと社内データセットをまたいだ主題とデバイスディバージョンの両方を扱うのに効果的であることが示された。
論文 参考訳(メタデータ) (2020-12-14T21:56:17Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Personalized Federated Learning: A Meta-Learning Approach [28.281166755509886]
フェデレートラーニング(Federated Learning)では、複数のコンピューティングユニット(ユーザ)にまたがるモデルをトレーニングすることを目的としています。
本稿では,現在あるいは新規利用者が自身のデータに対して1段階ないし数段階の勾配降下を実行することで,ローカルデータセットに容易に適応できるような,初歩的な共有モデルを見つけることを目標とする,フェデレーション学習のパーソナライズされたバリエーションについて検討する。
論文 参考訳(メタデータ) (2020-02-19T01:08:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。