A Subspace Projection Approach to Autoencoder-based Anomaly Detection
- URL: http://arxiv.org/abs/2302.07643v1
- Date: Wed, 15 Feb 2023 13:23:09 GMT
- Title: A Subspace Projection Approach to Autoencoder-based Anomaly Detection
- Authors: Jinho Choi, Jihong Park, Abhinav Japesh, Adarsh
- Abstract summary: Autoencoder (AE) is a neural network architecture that is trained to reconstruct an input at its output.
We propose a novel framework of AE-based anomaly detection, coined HFR-AE, by projecting new inputs into a subspace.
- Score: 45.37038692092683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoencoder (AE) is a neural network (NN) architecture that is trained to
reconstruct an input at its output. By measuring the reconstruction errors of
new input samples, AE can detect anomalous samples deviated from the trained
data distribution. The key to success is to achieve high-fidelity
reconstruction (HFR) while restricting AE's capability of generalization beyond
training data, which should be balanced commonly via iterative re-training.
Alternatively, we propose a novel framework of AE-based anomaly detection,
coined HFR-AE, by projecting new inputs into a subspace wherein the trained AE
achieves HFR, thereby increasing the gap between normal and anomalous sample
reconstruction errors. Simulation results corroborate that HFR-AE improves the
area under receiver operating characteristic curve (AUROC) under different AE
architectures and settings by up to 13.4% compared to Vanilla AE-based anomaly
detection.
Related papers
- Exploiting Autoencoder's Weakness to Generate Pseudo Anomalies [17.342474659784823]
A typical approach to anomaly detection is to train an autoencoder (AE) with normal data only so that it learns the patterns or representations of the normal data.
We propose creating pseudo anomalies from learned adaptive noise by exploiting the weakness of AE, i.e., reconstructing anomalies too well.
arXiv Detail & Related papers (2024-05-09T16:22:24Z) - Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data [11.237938539765825]
Autoencoder (AE) is typically trained to reconstruct the data.
During test time, since AE is not trained using real anomalies, it is expected to poorly reconstruct the anomalous data.
We propose to limit the reconstruction capability of AE by introducing a novel latent constriction loss.
arXiv Detail & Related papers (2024-03-24T19:22:15Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Synthetic Pseudo Anomalies for Unsupervised Video Anomaly Detection: A
Simple yet Efficient Framework based on Masked Autoencoder [1.9511777443446219]
We propose a simple yet efficient framework for video anomaly detection.
The pseudo anomaly samples are synthesized from only normal data by embedding random mask tokens without extra data processing.
We also propose a normalcy consistency training strategy that encourages the AEs to better learn the regular knowledge from normal and corresponding pseudo anomaly data.
arXiv Detail & Related papers (2023-03-09T08:33:38Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection [16.436293069942312]
Autoencoders (AEs) often start reconstructing anomalies as well which depletes their anomaly detection performance.
We propose a temporal pseudo anomaly synthesizer that generates fake-anomalies using only normal data.
An AE is then trained to maximize the reconstruction loss on pseudo anomalies while minimizing this loss on normal data.
arXiv Detail & Related papers (2021-10-19T07:08:44Z) - Learning Not to Reconstruct Anomalies [14.632592282260363]
Autoencoder (AE) is trained to reconstruct the input with training set consisting only of normal data.
AE is then expected to well reconstruct the normal data while poorly reconstructing the anomalous data.
We propose a novel methodology to train AEs with the objective of reconstructing only normal data, regardless of the input.
arXiv Detail & Related papers (2021-10-19T05:22:38Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.