論文の概要: Reinforcement Learning Based Power Grid Day-Ahead Planning and
AI-Assisted Control
- arxiv url: http://arxiv.org/abs/2302.07654v1
- Date: Wed, 15 Feb 2023 13:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 14:56:45.130914
- Title: Reinforcement Learning Based Power Grid Day-Ahead Planning and
AI-Assisted Control
- Title(参考訳): 強化学習に基づく電力グリッドデイアヘッド計画とAI支援制御
- Authors: Anton R. Fuxj\"ager, Kristian Kozak, Matthias Dorfer, Patrick M.
Blies, Marcel Wasserer (enliteAI)
- Abstract要約: 本稿では,再分散エージェントと機械学習に基づく最適化エージェントを組み合わせた渋滞管理手法を提案する。
典型的な再配置専用エージェントと比較して、シミュレーショングリッドの動作を長く保ちながら、同時に運用コストを削減できた。
本研究の目的は,この有望な技術を電力グリッド運用の現実に近づけることである。
- 参考スコア(独自算出の注目度): 0.27998963147546135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ongoing transition to renewable energy is increasing the share of
fluctuating power sources like wind and solar, raising power grid volatility
and making grid operation increasingly complex and costly. In our prior work,
we have introduced a congestion management approach consisting of a
redispatching optimizer combined with a machine learning-based topology
optimization agent. Compared to a typical redispatching-only agent, it was able
to keep a simulated grid in operation longer while at the same time reducing
operational cost. Our approach also ranked 1st in the L2RPN 2022 competition
initiated by RTE, Europe's largest grid operator. The aim of this paper is to
bring this promising technology closer to the real world of power grid
operation. We deploy RL-based agents in two settings resembling established
workflows, AI-assisted day-ahead planning and realtime control, in an attempt
to show the benefits and caveats of this new technology. We then analyse
congestion, redispatching and switching profiles, and elementary sensitivity
analysis providing a glimpse of operation robustness. While there is still a
long way to a real control room, we believe that this paper and the associated
prototypes help to narrow the gap and pave the way for a safe deployment of RL
agents in tomorrow's power grids.
- Abstract(参考訳): 再生可能エネルギーへの継続的な移行は、風力や太陽のような変動する電源のシェアを増大させ、電力グリッドのボラティリティを高め、グリッドの運用を複雑でコストがかかるようにしている。
先行研究では,機械学習に基づくトポロジ最適化エージェントと組み合わせた再配置オプティマイザによる混雑管理手法を導入した。
典型的な再配置専用エージェントと比較して、シミュレーショングリッドの動作を長く保ちながら、同時に運用コストを削減できた。
当社のアプローチは、欧州最大のグリッドオペレータであるRTEによるL2RPN 2022コンペティションでも第1位にランクインした。
本論文の目的は,この有望な技術が,電力網運用の現実の世界に近づけることである。
私たちは、この新技術のメリットと欠点を示すために、既存のワークフローに似た2つの設定でRLベースのエージェントをデプロイします。
次に, 混雑, 再パッチング, スイッチングプロファイルの解析を行い, 基本感度解析を行い, 動作のロバスト性を垣間見る。
実際の制御室への道はまだ長いですが、この論文とプロトタイプはギャップを狭め、明日の電力網にRLエージェントを安全に配置する道を開くのに役立つと考えています。
関連論文リスト
- State and Action Factorization in Power Grids [47.65236082304256]
状態と行動成分の相関関係をデータに基づいて推定するドメインに依存しないアルゴリズムを提案する。
このアルゴリズムはGrid2Opシミュレータで得られた電力グリッドベンチマークで検証される。
論文 参考訳(メタデータ) (2024-09-03T15:00:58Z) - Managing power grids through topology actions: A comparative study
between advanced rule-based and reinforcement learning agents [1.8549313085249322]
電力網の運用は、現在の高潮と再生可能エネルギー生産の増加により、ますます複雑になっている。
強化学習(Reinforcement Learning)は効率的かつ信頼性の高い手法であり,グリッドの自動操作の可能性も高いことが示されている。
本稿では、Binbinchenから提出されたエージェントを分析し、RLとルールベースのアプローチの両方において、エージェントを改善するための新しい戦略を提供する。
論文 参考訳(メタデータ) (2023-04-03T07:34:43Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent Deep reinforcement learning (MADRL) based power control scheme for the HetNet。
エージェント間の協調を促進するために,MADRLシステムのためのペナルティベースQラーニング(PQL)アルゴリズムを開発した。
このように、エージェントのポリシーは、他のエージェントによってより容易に学習でき、より効率的なコラボレーションプロセスをもたらす。
論文 参考訳(メタデータ) (2022-12-15T17:01:56Z) - Reinforcement Learning for Resilient Power Grids [0.23204178451683263]
従来の送電網は、より頻繁で極端な自然災害の下で時代遅れになっている。
ほとんどの電力グリッドシミュレータとRLインタフェースは、大規模なブラックアウトやネットワークがサブネットワークに分割された場合の電力グリッドのシミュレーションをサポートしない。
本研究では,既存のシミュレータとRLインタフェースであるGrid2Op上に構築された電力グリッドシミュレータを提案し,Grid2Opの動作と観測空間を制限する実験を行った。
論文 参考訳(メタデータ) (2022-12-08T04:40:14Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Power Grid Congestion Management via Topology Optimization with
AlphaZero [0.27998963147546135]
本稿では,AlphaZeroをベースとしたグリッドトポロジ最適化手法を提案する。
WCCI 2022ではL2RPN(Learning to Run a Power Network)コンペで1位にランクインした。
論文 参考訳(メタデータ) (2022-11-10T14:39:28Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
本稿では,変圧器を用いたマルチエージェント・アクタ・クリティカル・フレームワーク(T-MAAC)を提案する。
さらに、電圧制御タスクに適した新しい補助タスクトレーニングプロセスを採用し、サンプル効率を向上する。
論文 参考訳(メタデータ) (2022-06-08T07:48:42Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
本稿では,電力系統演算子のドメイン知識を強化学習フレームワークに統合する方法について述べる。
環境を改良することにより、報酬チューニングを伴うカリキュラムベースのアプローチをトレーニング手順に組み込む。
複数のシナリオに対する並列トレーニングアプローチは、エージェントをいくつかのシナリオに偏りなくし、グリッド操作の自然変動に対して堅牢にするために使用される。
論文 参考訳(メタデータ) (2021-12-18T20:32:05Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。