論文の概要: Enhancing Deep Knowledge Tracing with Auxiliary Tasks
- arxiv url: http://arxiv.org/abs/2302.07942v1
- Date: Tue, 14 Feb 2023 08:21:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:46:56.843053
- Title: Enhancing Deep Knowledge Tracing with Auxiliary Tasks
- Title(参考訳): 補助タスクによる深い知識追跡の強化
- Authors: Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Boyu Gao, Weiqi
Luo, Jian Weng
- Abstract要約: 本稿では,emphAT-DKTによる知識追跡モデルの予測性能の向上について述べる。
実世界の3つの教育データセットに関する総合的な実験を行い、提案手法を深部逐次KTモデルと非逐次モデルの両方と比較する。
- 参考スコア(独自算出の注目度): 24.780533765606922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge tracing (KT) is the problem of predicting students' future
performance based on their historical interactions with intelligent tutoring
systems. Recent studies have applied multiple types of deep neural networks to
solve the KT problem. However, there are two important factors in real-world
educational data that are not well represented. First, most existing works
augment input representations with the co-occurrence matrix of questions and
knowledge components\footnote{\label{ft:kc}A KC is a generalization of everyday
terms like concept, principle, fact, or skill.} (KCs) but fail to explicitly
integrate such intrinsic relations into the final response prediction task.
Second, the individualized historical performance of students has not been well
captured. In this paper, we proposed \emph{AT-DKT} to improve the prediction
performance of the original deep knowledge tracing model with two auxiliary
learning tasks, i.e., \emph{question tagging (QT) prediction task} and
\emph{individualized prior knowledge (IK) prediction task}. Specifically, the
QT task helps learn better question representations by predicting whether
questions contain specific KCs. The IK task captures students' global
historical performance by progressively predicting student-level prior
knowledge that is hidden in students' historical learning interactions. We
conduct comprehensive experiments on three real-world educational datasets and
compare the proposed approach to both deep sequential KT models and
non-sequential models. Experimental results show that \emph{AT-DKT} outperforms
all sequential models with more than 0.9\% improvements of AUC for all
datasets, and is almost the second best compared to non-sequential models.
Furthermore, we conduct both ablation studies and quantitative analysis to show
the effectiveness of auxiliary tasks and the superior prediction outcomes of
\emph{AT-DKT}.
- Abstract(参考訳): 知識追跡(KT)は、知的学習システムとの歴史的相互作用に基づいて、学生の将来のパフォーマンスを予測する問題である。
最近の研究は、KT問題を解決するために複数のタイプのディープニューラルネットワークを適用している。
しかし、実世界の教育データには、よく表現されていない2つの重要な要素がある。
第一に、既存の作品のほとんどが、質問と知識の共起行列で入力表現を補強する:footnote{\label{ft:kc}a kcは概念、原理、事実、技能といった日常用語の一般化である。
しかし、そのような内在的な関係を最終応答予測タスクに明示的に統合しない。
第二に、学生の個々人格的歴史業績はよく捉えられていない。
本稿では,2つの補助学習タスク,すなわち,emph{question tagging (qt) prediction task} と \emph{individualized prior knowledge (ik) prediction task} を用いて,元のdeep knowledge tracingモデルの予測性能を向上させるために, \emph{at-dkt} を提案する。
具体的には、QTタスクは、質問に特定のKCが含まれているかどうかを予測することによって、より良い質問表現を学ぶのに役立つ。
IKタスクは、学生の歴史的学習相互作用に隠された学生レベルの事前知識を段階的に予測することで、学生のグローバルな歴史的パフォーマンスを捉える。
実世界の3つの教育データセットに関する総合的な実験を行い、提案手法を深部逐次KTモデルと非逐次モデルの両方と比較する。
実験結果から、emph{AT-DKT} は全てのデータセットに対して 0.9\% 以上の改善を施したシーケンシャルモデルよりも優れており、非シーケンシャルモデルと比較しても2番目に良い。
さらに, 補助作業の有効性とemph{at-dkt}の優れた予測結果を示すため, アブレーション研究と定量的解析を行った。
関連論文リスト
- A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models [26.294808618068146]
知識追跡は,学生の今後の業績を予測する上で重要な役割を担っている。
ディープニューラルネットワーク(DNN)は、KT問題を解決する大きな可能性を示している。
しかし、KTプロセスのモデル化にディープラーニング技術を適用する際には、いくつかの重要な課題がある。
論文 参考訳(メタデータ) (2024-03-12T05:15:42Z) - Unified Pretraining for Recommendation via Task Hypergraphs [55.98773629788986]
本稿では,タスクハイパーグラフによる推薦のための統一事前学習という,新しいマルチタスク事前学習フレームワークを提案する。
多様なプレテキストタスクの要求やニュアンスを処理するための統一学習パターンとして,プレテキストタスクをハイパーエッジ予測に一般化するタスクハイパーグラフを設計する。
各プレテキストタスクとレコメンデーションの関連性を識別的に学習するために、新しいトランジショナルアテンション層が考案される。
論文 参考訳(メタデータ) (2023-10-20T05:33:21Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Improving Interpretability of Deep Sequential Knowledge Tracing Models
with Question-centric Cognitive Representations [22.055683237994696]
上記の課題に対処する質問中心の解釈可能なKTモデルQIKTを提案する。
提案したQIKTアプローチは、学生の知識状態の変動をきめ細かいレベルで明示的にモデル化する。
より優れたモデル解釈性を備えた予測精度で、幅広いディープラーニングベースのKTモデルより優れています。
論文 参考訳(メタデータ) (2023-02-14T08:14:30Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Deep Knowledge Tracing with Learning Curves [0.9088303226909278]
本稿では,進化的知識追跡(CAKT)モデルを提案する。
このモデルは、3次元畳み込みニューラルネットワークを用いて、次の質問で同じ知識の概念を適用した学生の最近の経験を明示的に学習する。
CAKTは,既存のモデルと比較して,生徒の反応を予測する上で,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-07-26T15:24:51Z) - qDKT: Question-centric Deep Knowledge Tracing [29.431121650577396]
DKTの変種であるqDKTを導入し、各学習者の成功確率を時間とともにモデル化する。
qDKTはグラフラプラシア正規化を各スキルの下で滑らかな予測に組み込む。
いくつかの実世界のデータセットの実験により、qDKTは学習結果の予測において最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-05-25T23:43:55Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。