The qudit Pauli group: non-commuting pairs, non-commuting sets, and structure theorems
- URL: http://arxiv.org/abs/2302.07966v2
- Date: Fri, 29 Mar 2024 15:21:21 GMT
- Title: The qudit Pauli group: non-commuting pairs, non-commuting sets, and structure theorems
- Authors: Rahul Sarkar, Theodore J. Yoder,
- Abstract summary: We study the structure of the qudit Pauli group for any, including composite, $d$ in several ways.
For any specified set of commutation relations, we construct a set of qudit Paulis satisfying those relations.
We also study the maximum size of sets of Paulis that mutually non-commute and sets that non-commute in pairs.
- Score: 0.7673339435080445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Qudits with local dimension $d>2$ can have unique structure and uses that qubits ($d=2$) cannot. Qudit Pauli operators provide a very useful basis of the space of qudit states and operators. We study the structure of the qudit Pauli group for any, including composite, $d$ in several ways. To cover composite values of $d$, we work with modules over commutative rings, which generalize the notion of vector spaces over fields. For any specified set of commutation relations, we construct a set of qudit Paulis satisfying those relations. We also study the maximum size of sets of Paulis that mutually non-commute and sets that non-commute in pairs. Finally, we give methods to find near minimal generating sets of Pauli subgroups, calculate the sizes of Pauli subgroups, and find bases of logical operators for qudit stabilizer codes. Useful tools in this study are normal forms from linear algebra over commutative rings, including the Smith normal form, alternating Smith normal form, and Howell normal form of matrices. Possible applications of this work include the construction and analysis of qudit stabilizer codes, entanglement assisted codes, parafermion codes, and fermionic Hamiltonian simulation.
Related papers
- On lower bounds of the density of planar periodic sets without unit distances [55.2480439325792]
We introduce a novel approach to estimating $m_1(mathbbR2)$ by reformulating the problem as a Maximal Independent Set (MIS) problem on graphs constructed from flat torus.
Our experimental results supported by theoretical justifications of proposed method demonstrate that for a sufficiently wide range of parameters this approach does not improve the known lower bound.
arXiv Detail & Related papers (2024-11-20T12:07:19Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Optimally generating $\mathfrak{su}(2^N)$ using Pauli strings [0.0]
We show that the minimal such set generating $mathfraksu (2N)$ contains $2N+1$ elements.
We also provide an algorithm for producing a sequence of rotations corresponding to any given Pauli rotation.
arXiv Detail & Related papers (2024-08-06T16:42:01Z) - Full classification of Pauli Lie algebras [0.29998889086656577]
We provide a comprehensive classification of Lie algebras generated by an arbitrary set of Pauli operators.
We find a no-go result for the existence of small Lie algebras beyond the free-fermionic case in the Pauli setting.
These results bear significant impact in ideas in a number of fields like quantum control, quantum machine learning, or classical simulation of quantum circuits.
arXiv Detail & Related papers (2024-07-31T18:00:11Z) - Extracting topological orders of generalized Pauli stabilizer codes in two dimensions [5.593891873998947]
We introduce an algorithm for extracting topological data from translation invariant generalized Pauli stabilizer codes in two-dimensional systems.
The algorithm applies to $mathbbZ_d$ qudits, including instances where $d$ is a nonprime number.
arXiv Detail & Related papers (2023-12-18T13:18:19Z) - Fast Partitioning of Pauli Strings into Commuting Families for Optimal
Expectation Value Measurements of Dense Operators [0.0]
Pauli strings appearing in the decomposition of an operator can be can be grouped into commuting families.
We detail an algorithm to completely partition the full set of Pauli strings acting on any number of qubits into the minimal number of sets of commuting families.
arXiv Detail & Related papers (2023-05-19T17:39:33Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Adaptive constant-depth circuits for manipulating non-abelian anyons [65.62256987706128]
Kitaev's quantum double model based on a finite group $G$.
We describe quantum circuits for (a) preparation of the ground state, (b) creation of anyon pairs separated by an arbitrary distance, and (c) non-destructive topological charge measurement.
arXiv Detail & Related papers (2022-05-04T08:10:36Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Coherent randomized benchmarking [68.8204255655161]
We show that superpositions of different random sequences rather than independent samples are used.
We show that this leads to a uniform and simple protocol with significant advantages with respect to gates that can be benchmarked.
arXiv Detail & Related papers (2020-10-26T18:00:34Z) - Circuit optimization of Hamiltonian simulation by simultaneous
diagonalization of Pauli clusters [1.0587959762260986]
Quantum circuits for exact time evolution of single Pauli operators are well known, and can be extended trivially to sums of commuting Paulis.
In this paper we reduce the circuit complexity of Hamiltonian simulation by partitioning the Pauli operators into mutually commuting clusters.
We show that the proposed approach can help to significantly reduce both the number of CNOT operations and circuit depth for Hamiltonians arising in quantum chemistry.
arXiv Detail & Related papers (2020-03-30T16:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.