Optimally generating $\mathfrak{su}(2^N)$ using Pauli strings
- URL: http://arxiv.org/abs/2408.03294v2
- Date: Wed, 28 Aug 2024 10:13:26 GMT
- Title: Optimally generating $\mathfrak{su}(2^N)$ using Pauli strings
- Authors: Isaac D. Smith, Maxime Cautrès, David T. Stephen, Hendrik Poulsen Nautrup,
- Abstract summary: We show that the minimal such set generating $mathfraksu (2N)$ contains $2N+1$ elements.
We also provide an algorithm for producing a sequence of rotations corresponding to any given Pauli rotation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Any quantum computation consists of a sequence of unitary evolutions described by a finite set of Hamiltonians. When this set is taken to consist of only products of Pauli operators, we show that the minimal such set generating $\mathfrak{su}(2^{N})$ contains $2N+1$ elements. We provide a number of examples of such generating sets and furthermore provide an algorithm for producing a sequence of rotations corresponding to any given Pauli rotation, which is shown to have optimal complexity.
Related papers
- A Novel Finite Fractional Fourier Transform and its Quantum Circuit Implementation on Qudits [0.0]
We present a new number theoretic definition of discrete fractional Fourier transform (DFrFT)
The DFrFT is defined as the $N times N$ dimensional unitary representation of the generator of the arithmetic rotational group $SO_2[mathbbZ_pn]$.
arXiv Detail & Related papers (2024-09-09T16:15:53Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
We revisit the sample and computational complexity of completing a rank-1 tensor in $otimes_i=1N mathbbRd$.
We present a characterization of the problem which admits an algorithm amounting to Gauss-Jordan on a pair of random linear systems.
arXiv Detail & Related papers (2024-08-10T04:26:19Z) - Efficient unitary designs and pseudorandom unitaries from permutations [35.66857288673615]
We show that products exponentiated sums of $S(N)$ permutations with random phases match the first $2Omega(n)$ moments of the Haar measure.
The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the method.
arXiv Detail & Related papers (2024-04-25T17:08:34Z) - Optimised Baranyai partitioning of the second quantised Hamiltonian [0.0]
We present the implementation and optimisation of the Baranyai grouping method for second quantised Hamiltonian partitioning.
We show that this method naturally handles sparsity in the Hamiltonian and produces a $O(1)$ number of groups for linearly scaling Hamiltonians.
We also present an explicit optimisation for spin-symmetry which reduces the number of groups by a factor of $8$, without extra computational effort.
arXiv Detail & Related papers (2023-11-20T15:04:05Z) - Fast Partitioning of Pauli Strings into Commuting Families for
Expectation Value Measurements of Dense Operators [0.0]
We present an algorithm to partition the full set of $m$-qubit Pauli strings into the minimal number of commuting families.
We also compare how our method scales compared to graph-theoretic techniques for the generally commuting case.
arXiv Detail & Related papers (2023-11-14T21:22:54Z) - Sampled Transformer for Point Sets [80.66097006145999]
sparse transformer can reduce the computational complexity of the self-attention layers to $O(n)$, whilst still being a universal approximator of continuous sequence-to-sequence functions.
We propose an $O(n)$ complexity sampled transformer that can process point set elements directly without any additional inductive bias.
arXiv Detail & Related papers (2023-02-28T06:38:05Z) - The qudit Pauli group: non-commuting pairs, non-commuting sets, and structure theorems [0.7673339435080445]
We study the structure of the qudit Pauli group for any, including composite, $d$ in several ways.
For any specified set of commutation relations, we construct a set of qudit Paulis satisfying those relations.
We also study the maximum size of sets of Paulis that mutually non-commute and sets that non-commute in pairs.
arXiv Detail & Related papers (2023-02-15T22:06:40Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
We find an algorithm which finds.
epsilon$-approximate stationary point (with $|nabla F(x)|le epsilon$) using.
$(epsilon,gamma)$surimate random random points.
Our lower bounds here are novel even in the noiseless case.
arXiv Detail & Related papers (2020-06-24T04:41:43Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
We first prove a simple variant of the vanilla coordinate ascent, called Coordinate-Ascent+.
We then propose Coordinate-Ascent++, that achieves tight $(1-1/e-varepsilon)$-approximation guarantee while performing the same number of iterations.
The computation of each round of Coordinate-Ascent++ can be easily parallelized so that the computational cost per machine scales as $O(n/sqrtvarepsilon+nlog n)$.
arXiv Detail & Related papers (2020-06-21T06:57:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.