Self-supervised Registration and Segmentation of the Ossicles with A
Single Ground Truth Label
- URL: http://arxiv.org/abs/2302.07967v1
- Date: Wed, 15 Feb 2023 22:11:31 GMT
- Title: Self-supervised Registration and Segmentation of the Ossicles with A
Single Ground Truth Label
- Authors: Yike Zhang and Jack Noble
- Abstract summary: This paper presents a novel technique using a self-supervised 3D-UNet that produces a dense deformation field between an atlas and a target image.
Our results show that our method outperforms traditional image segmentation methods and generates a more accurate boundary around the ossicles.
- Score: 1.6244541005112747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-assisted surgeries have drawn the attention of the medical image research
community due to their real-world impact on improving surgery success rates.
For image-guided surgeries, such as Cochlear Implants (CIs), accurate object
segmentation can provide useful information for surgeons before an operation.
Recently published image segmentation methods that leverage machine learning
usually rely on a large number of manually predefined ground truth labels.
However, it is a laborious and time-consuming task to prepare the dataset. This
paper presents a novel technique using a self-supervised 3D-UNet that produces
a dense deformation field between an atlas and a target image that can be used
for atlas-based segmentation of the ossicles. Our results show that our method
outperforms traditional image segmentation methods and generates a more
accurate boundary around the ossicles based on Dice similarity coefficient and
point-to-point error comparison. The mean Dice coefficient is improved by 8.51%
with our proposed method.
Related papers
- Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - PCDAL: A Perturbation Consistency-Driven Active Learning Approach for
Medical Image Segmentation and Classification [12.560273908522714]
Supervised learning deeply relies on large-scale annotated data, which is expensive, time-consuming, and impractical to acquire in medical imaging applications.
Active Learning (AL) methods have been widely applied in natural image classification tasks to reduce annotation costs.
We propose an AL-based method that can be simultaneously applied to 2D medical image classification, segmentation, and 3D medical image segmentation tasks.
arXiv Detail & Related papers (2023-06-29T13:11:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Co-Generation and Segmentation for Generalized Surgical Instrument
Segmentation on Unlabelled Data [49.419268399590045]
Surgical instrument segmentation for robot-assisted surgery is needed for accurate instrument tracking and augmented reality overlays.
Deep learning-based methods have shown state-of-the-art performance for surgical instrument segmentation, but their results depend on labelled data.
In this paper, we demonstrate the limited generalizability of these methods on different datasets, including human robot-assisted surgeries.
arXiv Detail & Related papers (2021-03-16T18:41:18Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.