論文の概要: Do We Still Need Clinical Language Models?
- arxiv url: http://arxiv.org/abs/2302.08091v1
- Date: Thu, 16 Feb 2023 05:08:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 14:52:47.566103
- Title: Do We Still Need Clinical Language Models?
- Title(参考訳): 臨床言語モデルはまだ必要か?
- Authors: Eric Lehman, Evan Hernandez, Diwakar Mahajan, Jonas Wulff, Micah J.
Smith, Zachary Ziegler, Daniel Nadler, Peter Szolovits, Alistair Johnson,
Emily Alsentzer
- Abstract要約: 比較的小さな専門的な臨床モデルでは、コンテキスト内学習のアプローチが大幅に優れていることを示す。
physioNet Credentialed Health Dataライセンスとデータ使用契約の下で使用されるコードとモデルをリリースします。
- 参考スコア(独自算出の注目度): 15.023633270864675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although recent advances in scaling large language models (LLMs) have
resulted in improvements on many NLP tasks, it remains unclear whether these
models trained primarily with general web text are the right tool in highly
specialized, safety critical domains such as clinical text. Recent results have
suggested that LLMs encode a surprising amount of medical knowledge. This
raises an important question regarding the utility of smaller domain-specific
language models. With the success of general-domain LLMs, is there still a need
for specialized clinical models? To investigate this question, we conduct an
extensive empirical analysis of 12 language models, ranging from 220M to 175B
parameters, measuring their performance on 3 different clinical tasks that test
their ability to parse and reason over electronic health records. As part of
our experiments, we train T5-Base and T5-Large models from scratch on clinical
notes from MIMIC III and IV to directly investigate the efficiency of clinical
tokens. We show that relatively small specialized clinical models substantially
outperform all in-context learning approaches, even when finetuned on limited
annotated data. Further, we find that pretraining on clinical tokens allows for
smaller, more parameter-efficient models that either match or outperform much
larger language models trained on general text. We release the code and the
models used under the PhysioNet Credentialed Health Data license and data use
agreement.
- Abstract(参考訳): 最近の大規模言語モデル(llm)のスケーリングの進歩により、多くのnlpタスクが改善されているが、一般的なwebテキストでトレーニングされたこれらのモデルが、臨床テキストのような高度に専門的で安全な重要なドメインにおいて正しいツールであるかどうかは不明である。
近年、LSMは驚くほど多くの医学的知識をコードしていることが示唆されている。
これは、より小さなドメイン固有言語モデルの有用性に関する重要な疑問を提起する。
一般ドメインLSMの成功により、まだ専門的な臨床モデルの必要性はあるのだろうか?
本研究では,12の言語モデルについて,220Mから175Bのパラメータから,電子的健康記録を解析・解析する3つの異なる臨床課題に対する評価まで,広範囲にわたる経験的分析を行った。
実験の一環として,MIMIC III と IV の臨床ノートから,T5-Base と T5-Large モデルをスクラッチから訓練し,臨床トークンの効率を直接的に調査する。
比較的小さな専門的臨床モデルは,限られた注釈付きデータに基づいて微調整した場合でも,コンテキスト内学習のアプローチを著しく上回っている。
さらに,臨床トークンの事前トレーニングによって,一般的なテキストでトレーニングされたはるかに大きな言語モデルと一致するか,あるいは上回る,より小さくパラメータ効率の高いモデルが可能になることを見出した。
physioNet Credentialed Health Dataライセンスとデータ使用契約の下で使用されるコードとモデルをリリースします。
関連論文リスト
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
本研究では,LLMがパラメータ分布を真に生成するかどうかを評価するとともに,文脈内学習と事前推論のためのモデル選択戦略を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - Is larger always better? Evaluating and prompting large language models for non-generative medical tasks [11.799956298563844]
本研究は、GPTベースのLCM、BERTベースのモデル、従来の臨床予測モデルなど、さまざまなモデルをベンチマークする。
我々は,寛容と予測,疾患階層再構築,生物医学的文章マッチングといった課題に焦点をあてた。
その結果, LLMは, 適切に設計されたプロンプト戦略を用いて, 構造化EHRデータに対して頑健なゼロショット予測能力を示した。
構造化されていない医療用テキストでは、LLMは細調整されたBERTモデルよりも優れておらず、教師なしタスクと教師なしタスクの両方に優れていた。
論文 参考訳(メタデータ) (2024-07-26T06:09:10Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - SoftTiger: A Clinical Foundation Model for Healthcare Workflows [5.181665205189493]
医療基盤モデルとして設計された臨床用大規模言語モデル(CLaM)であるSoftTigerを紹介する。
我々は,3つのサブタスク,すなわち国際患者要約,臨床印象,医療的出会いのデータを収集し,注釈する。
公立および認証臨床データを用いて,最先端のLCMの微調整を指導した。
論文 参考訳(メタデータ) (2024-03-01T04:39:16Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
我々は、文脈言語学習(ICLL)において、私たちが用語する新しいモデル問題群(英語版)のレンズを通してICLを研究する。
我々は,通常のICLLタスクにおいて,多種多様なニューラルシーケンスモデルを評価する。
論文 参考訳(メタデータ) (2024-01-23T18:59:21Z) - Dynamic Q&A of Clinical Documents with Large Language Models [3.021316686584699]
本研究は,臨床ノートにおける動的質問応答のための大規模言語モデル(LLM)を用いた自然言語インタフェースを提案する。
様々な埋め込みモデルと高度なLLMを利用する実験は、高い計算要求にもかかわらず、ウィザード・ヴィクナの優れた精度を示している。
論文 参考訳(メタデータ) (2024-01-19T14:50:22Z) - Generalist embedding models are better at short-context clinical
semantic search than specialized embedding models [0.9296448006507203]
ICD-10-CMのコード記述と容易に再現可能な言い換えに基づくデータセットを構築する。
セマンティックサーチタスクにおいて、ジェネラリストまたは臨床領域専門の既存の埋め込みモデルをベンチマークした。
その結果、ジェネラリストモデルは臨床モデルよりも優れており、既存の臨床特化モデルは、それらを混乱させる入力の小さな変化に対してより敏感であることが示唆された。
論文 参考訳(メタデータ) (2024-01-03T19:03:32Z) - Lightweight Transformers for Clinical Natural Language Processing [9.532776962985828]
本研究は,臨床テキスト処理のためのコンパクト言語モデルの開発に焦点をあてる。
知識蒸留と連続学習を用いた多種多様な軽量臨床用変圧器を開発した。
評価はいくつかの標準データセットにまたがって行われ、幅広い臨床テキストマイニングタスクをカバーした。
論文 参考訳(メタデータ) (2023-02-09T16:07:31Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。