ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations
- URL: http://arxiv.org/abs/2302.08137v1
- Date: Thu, 16 Feb 2023 08:10:41 GMT
- Title: ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations
- Authors: Shehzeen Hussain, Paarth Neekhara, Jocelyn Huang, Jason Li, Boris
Ginsburg
- Abstract summary: We propose a zero-shot voice conversion method using speech representations trained with self-supervised learning.
We develop a multi-task model to decompose a speech utterance into features such as linguistic content, speaker characteristics, and speaking style.
Next, we develop a synthesis model with pitch and duration predictors that can effectively reconstruct the speech signal from its representation.
- Score: 12.20522794248598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a zero-shot voice conversion method using speech
representations trained with self-supervised learning. First, we develop a
multi-task model to decompose a speech utterance into features such as
linguistic content, speaker characteristics, and speaking style. To disentangle
content and speaker representations, we propose a training strategy based on
Siamese networks that encourages similarity between the content representations
of the original and pitch-shifted audio. Next, we develop a synthesis model
with pitch and duration predictors that can effectively reconstruct the speech
signal from its decomposed representation. Our framework allows controllable
and speaker-adaptive synthesis to perform zero-shot any-to-any voice conversion
achieving state-of-the-art results on metrics evaluating speaker similarity,
intelligibility, and naturalness. Using just 10 seconds of data for a target
speaker, our framework can perform voice swapping and achieves a speaker
verification EER of 5.5% for seen speakers and 8.4% for unseen speakers.
Related papers
- Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - SelfVC: Voice Conversion With Iterative Refinement using Self Transformations [42.97689861071184]
SelfVC is a training strategy to improve a voice conversion model with self-synthesized examples.
We develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model.
Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
arXiv Detail & Related papers (2023-10-14T19:51:17Z) - Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
This paper proposes a disentanglement framework that simultaneously models speaker traits and content variability in speech.
It is validated with experiments conducted on the VoxCeleb and SITW datasets with 9.56% and 8.24% average reductions in EER and minDCF.
arXiv Detail & Related papers (2023-10-02T12:02:07Z) - Zero-shot personalized lip-to-speech synthesis with face image based
voice control [41.17483247506426]
Lip-to-Speech (Lip2Speech) synthesis, which predicts corresponding speech from talking face images, has witnessed significant progress with various models and training strategies.
We propose a zero-shot personalized Lip2Speech synthesis method, in which face images control speaker identities.
arXiv Detail & Related papers (2023-05-09T02:37:29Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data.
The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches.
arXiv Detail & Related papers (2023-04-24T10:15:58Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z) - Cross-lingual Text-To-Speech with Flow-based Voice Conversion for
Improved Pronunciation [11.336431583289382]
This paper presents a method for end-to-end cross-lingual text-to-speech.
It aims to preserve the target language's pronunciation regardless of the original speaker's language.
arXiv Detail & Related papers (2022-10-31T12:44:53Z) - AdaSpeech 4: Adaptive Text to Speech in Zero-Shot Scenarios [143.47967241972995]
We develop AdaSpeech 4, a zero-shot adaptive TTS system for high-quality speech synthesis.
We model the speaker characteristics systematically to improve the generalization on new speakers.
Without any fine-tuning, AdaSpeech 4 achieves better voice quality and similarity than baselines in multiple datasets.
arXiv Detail & Related papers (2022-04-01T13:47:44Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.