Discl-VC: Disentangled Discrete Tokens and In-Context Learning for Controllable Zero-Shot Voice Conversion
- URL: http://arxiv.org/abs/2505.24291v1
- Date: Fri, 30 May 2025 07:04:23 GMT
- Title: Discl-VC: Disentangled Discrete Tokens and In-Context Learning for Controllable Zero-Shot Voice Conversion
- Authors: Kaidi Wang, Wenhao Guan, Ziyue Jiang, Hukai Huang, Peijie Chen, Weijie Wu, Qingyang Hong, Lin Li,
- Abstract summary: Discl-VC is a novel zero-shot voice conversion framework.<n>It disentangles content and prosody information from self-supervised speech representations.<n>It synthesizes the target speaker's voice through in-context learning.
- Score: 16.19865417052239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, zero-shot voice conversion systems are capable of synthesizing the voice of unseen speakers. However, most existing approaches struggle to accurately replicate the speaking style of the source speaker or mimic the distinctive speaking style of the target speaker, thereby limiting the controllability of voice conversion. In this work, we propose Discl-VC, a novel voice conversion framework that disentangles content and prosody information from self-supervised speech representations and synthesizes the target speaker's voice through in-context learning with a flow matching transformer. To enable precise control over the prosody of generated speech, we introduce a mask generative transformer that predicts discrete prosody tokens in a non-autoregressive manner based on prompts. Experimental results demonstrate the superior performance of Discl-VC in zero-shot voice conversion and its remarkable accuracy in prosody control for synthesized speech.
Related papers
- Zero-shot Voice Conversion with Diffusion Transformers [0.0]
Zero-shot voice conversion aims to transform a source speech utterance to match the timbre of a reference speech from an unseen speaker.
Traditional approaches struggle with timbre leakage, insufficient timbre representation, and mismatches between training and inference tasks.
We propose Seed-VC, a novel framework that addresses these issues by introducing an external timbre shifter during training.
arXiv Detail & Related papers (2024-11-15T04:43:44Z) - Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt [50.25271407721519]
We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language.<n>We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation.<n>Experiments show that our model achieves favorable controlling ability and audio quality.
arXiv Detail & Related papers (2024-03-18T13:39:05Z) - SelfVC: Voice Conversion With Iterative Refinement using Self Transformations [42.97689861071184]
SelfVC is a training strategy to improve a voice conversion model with self-synthesized examples.
We develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model.
Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
arXiv Detail & Related papers (2023-10-14T19:51:17Z) - Towards General-Purpose Text-Instruction-Guided Voice Conversion [84.78206348045428]
This paper introduces a novel voice conversion model, guided by text instructions such as "articulate slowly with a deep tone" or "speak in a cheerful boyish voice"
The proposed VC model is a neural language model which processes a sequence of discrete codes, resulting in the code sequence of converted speech.
arXiv Detail & Related papers (2023-09-25T17:52:09Z) - ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations [12.20522794248598]
We propose a zero-shot voice conversion method using speech representations trained with self-supervised learning.
We develop a multi-task model to decompose a speech utterance into features such as linguistic content, speaker characteristics, and speaking style.
Next, we develop a synthesis model with pitch and duration predictors that can effectively reconstruct the speech signal from its representation.
arXiv Detail & Related papers (2023-02-16T08:10:41Z) - Controllable speech synthesis by learning discrete phoneme-level
prosodic representations [53.926969174260705]
We present a novel method for phoneme-level prosody control of F0 and duration using intuitive discrete labels.
We propose an unsupervised prosodic clustering process which is used to discretize phoneme-level F0 and duration features from a multispeaker speech dataset.
arXiv Detail & Related papers (2022-11-29T15:43:36Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
Existing systems ignore the correlation between prosody and language content, leading to degradation of naturalness in converted speech.
We devise a cascaded modular system leveraging self-supervised discrete speech units as language representation.
Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability.
arXiv Detail & Related papers (2022-11-12T00:54:09Z) - Robust Disentangled Variational Speech Representation Learning for
Zero-shot Voice Conversion [34.139871476234205]
We investigate zero-shot voice conversion from a novel perspective of self-supervised disentangled speech representation learning.
A zero-shot voice conversion is performed by feeding an arbitrary speaker embedding and content embeddings to a sequential variational autoencoder (VAE) decoder.
On TIMIT and VCTK datasets, we achieve state-of-the-art performance on both objective evaluation, i.e., speaker verification (SV) on speaker embedding and content embedding, and subjective evaluation, i.e. voice naturalness and similarity, and remains to be robust even with noisy source/target utterances.
arXiv Detail & Related papers (2022-03-30T23:03:19Z) - Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration [62.75234183218897]
We propose a one-stage context-aware framework to generate natural and coherent target speech without any training data of the speaker.
We generate the mel-spectrogram of the edited speech with a transformer-based decoder.
It outperforms a recent zero-shot TTS engine by a large margin.
arXiv Detail & Related papers (2021-09-12T04:17:53Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - Expressive Neural Voice Cloning [12.010555227327743]
We propose a controllable voice cloning method that allows fine-grained control over various style aspects of the synthesized speech for an unseen speaker.
We show that our framework can be used for various expressive voice cloning tasks using only a few transcribed or untranscribed speech samples for a new speaker.
arXiv Detail & Related papers (2021-01-30T05:09:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.