論文の概要: Model-Based Decentralized Policy Optimization
- arxiv url: http://arxiv.org/abs/2302.08139v1
- Date: Thu, 16 Feb 2023 08:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 14:34:24.361888
- Title: Model-Based Decentralized Policy Optimization
- Title(参考訳): モデルに基づく分散ポリシー最適化
- Authors: Hao Luo, Jiechuan Jiang, and Zongqing Lu
- Abstract要約: 分散されたポリシー最適化は、協調的なマルチエージェントタスクでよく使われてきた。
モデルベース分散ポリシー最適化(MDPO)を提案する。
MDPOの政策最適化はモデルフリーの分散政策最適化よりも安定である。
- 参考スコア(独自算出の注目度): 27.745312627153012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized policy optimization has been commonly used in cooperative
multi-agent tasks. However, since all agents are updating their policies
simultaneously, from the perspective of individual agents, the environment is
non-stationary, resulting in it being hard to guarantee monotonic policy
improvement. To help the policy improvement be stable and monotonic, we propose
model-based decentralized policy optimization (MDPO), which incorporates a
latent variable function to help construct the transition and reward function
from an individual perspective. We theoretically analyze that the policy
optimization of MDPO is more stable than model-free decentralized policy
optimization. Moreover, due to non-stationarity, the latent variable function
is varying and hard to be modeled. We further propose a latent variable
prediction method to reduce the error of the latent variable function, which
theoretically contributes to the monotonic policy improvement. Empirically,
MDPO can indeed obtain superior performance than model-free decentralized
policy optimization in a variety of cooperative multi-agent tasks.
- Abstract(参考訳): 分散ポリシー最適化は、協調的マルチエージェントタスクで一般的に用いられてきた。
しかし、各エージェントは個別のエージェントの観点から同時にポリシーを更新しているため、環境は静止していないため、単調な政策改善を保証することは困難である。
政策改善の安定とモノトニック化を支援するために,モデルベース分散ポリシー最適化(mdpo, model-based decentralized policy optimization)を提案する。
MDPOの政策最適化はモデルフリーの分散政策最適化よりも安定である。
さらに、非定常性のため、潜在変数関数は変化し、モデル化が困難である。
さらに,潜在変数関数の誤差を減少させる潜在変数予測法を提案し,理論上は単調な方針改善に寄与する。
MDPOは、様々な協調マルチエージェントタスクにおいて、モデルフリーの分散ポリシー最適化よりも優れた性能を得ることができる。
関連論文リスト
- Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
本研究では,政策に対する信頼領域の制約が,基礎となるモノトニック改善の保証を損なうことなく,信頼領域のない制約によって安全に置き換えられることを示す。
我々は,TREFree(Trust-Region-Free Policy Optimization)と呼ばれるアルゴリズムを,信頼領域の制約が不要であるとして明示する。
論文 参考訳(メタデータ) (2023-02-15T23:10:06Z) - Robust Policy Optimization in Deep Reinforcement Learning [16.999444076456268]
連続的な行動領域では、パラメータ化された行動分布は容易に探索の制御を可能にする。
特に,摂動分布を利用したロバストポリシ最適化(RPO)アルゴリズムを提案する。
我々は,DeepMind Control,OpenAI Gym,Pybullet,IsaacGymの各種連続制御タスクについて評価を行った。
論文 参考訳(メタデータ) (2022-12-14T22:43:56Z) - Decentralized Policy Optimization [21.59254848913971]
単調な改善と収束を保証する分散型アクター批判アルゴリズムであるテキスト分散ポリシー最適化(DPO)を提案する。
実験的に、DPOとIPPOを協調的な多エージェントタスクで比較し、離散的かつ連続的な行動空間、完全かつ部分的に観察可能な環境を網羅した。
論文 参考訳(メタデータ) (2022-11-06T05:38:23Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
分散実行は協調型マルチエージェント強化学習(MARL)における中核的要求である
本稿では,マルチエージェントポリシー勾配法と値分解法という,分散ポリシを用いた2つの一般的なアルゴリズムのクラスを理論的に解析する。
我々は,TAD-PPO が有限マルチエージェント MDP において最適政策学習を理論的に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-12T06:59:13Z) - Coordinated Proximal Policy Optimization [28.780862892562308]
Coordinated Proximal Policy Optimization (CoPPO) は、オリジナルの Proximal Policy Optimization (PPO) をマルチエージェント設定に拡張するアルゴリズムである。
我々は,理論的な共同目的を最適化する際の政策改善の単調性を証明する。
そこで我々は,CoPPOにおけるそのような目的がエージェント間の動的信用割り当てを達成し,エージェントポリシーの同時更新時の高分散問題を軽減することができると解釈した。
論文 参考訳(メタデータ) (2021-11-07T11:14:19Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
本稿では,平均場近似ポリシ最適化(MF-PPO)アルゴリズムを提案する。
我々は,MF-PPOが収束のサブ線形速度で世界的最適政策を達成することを証明した。
特に、置換不変ニューラルアーキテクチャによって引き起こされる誘導バイアスは、MF-PPOが既存の競合より優れていることを示す。
論文 参考訳(メタデータ) (2021-05-18T04:35:41Z) - Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via
Trust Region Decomposition [52.06086375833474]
非定常性は多エージェント強化学習における厄介な問題である。
ポリシーシーケンスの定常性を明示的にモデル化するための$delta$-stationarity測定を導入する。
共同政策の分岐を推定するために,メッセージパッシングに基づく信頼領域分解ネットワークを提案する。
論文 参考訳(メタデータ) (2021-02-21T14:46:50Z) - Optimistic Distributionally Robust Policy Optimization [2.345728642535161]
Trust Region Policy Optimization (TRPO) と Proximal Policy Optimization (PPO) は、特定のパラメトリック分布クラスにポリシー表現を制限するため、準最適解に収束する傾向にある。
そこで我々は,信頼領域制約最適化問題をパラメータ化せずに解くために,最適分布ロバストポリシ最適化(ODRO)アルゴリズムを開発した。
提案アルゴリズムは, TRPOとPPOを改良し, 学習安定性を確保しつつ, サンプル効率の向上と最終方針の性能向上を実現した。
論文 参考訳(メタデータ) (2020-06-14T06:36:18Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
信頼地域政策最適化(TRPO)とPPO(Pximal Policy Optimization)は、深層強化学習(RL)において最も成功した政策勾配アプローチの一つである。
本稿では, 連続的な政策によって引き起こされる割引状態-行動訪問分布を, 近接項で抑制し, 政策改善を安定化させる新しいアルゴリズムを提案する。
提案手法は, ベンチマーク高次元制御タスクの安定性と最終的な性能向上に有効である。
論文 参考訳(メタデータ) (2020-03-09T13:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。