論文の概要: Counterfactual Fair Opportunity: Measuring Decision Model Fairness with
Counterfactual Reasoning
- arxiv url: http://arxiv.org/abs/2302.08158v1
- Date: Thu, 16 Feb 2023 09:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 14:25:20.966486
- Title: Counterfactual Fair Opportunity: Measuring Decision Model Fairness with
Counterfactual Reasoning
- Title(参考訳): 対物フェア機会:対物推論による決定モデルフェアネスの測定
- Authors: Giandomenico Cornacchia, Vito Walter Anelli, Fedelucio Narducci,
Azzurra Ragone, Eugenio Di Sciascio
- Abstract要約: 本研究は,不注意条件下での公正な場合において,反実的推論を用いて不公平なモデル行動を明らかにすることを目的とする。
対物フェアという対物機会の対物バージョンを定義し、対物サンプルのセンシティブな情報を分析する2つの新しい指標を紹介した。
- 参考スコア(独自算出の注目度): 5.626570248105078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing application of Artificial Intelligence and Machine Learning
models poses potential risks of unfair behavior and, in light of recent
regulations, has attracted the attention of the research community. Several
researchers focused on seeking new fairness definitions or developing
approaches to identify biased predictions. However, none try to exploit the
counterfactual space to this aim. In that direction, the methodology proposed
in this work aims to unveil unfair model behaviors using counterfactual
reasoning in the case of fairness under unawareness setting. A counterfactual
version of equal opportunity named counterfactual fair opportunity is defined
and two novel metrics that analyze the sensitive information of counterfactual
samples are introduced. Experimental results on three different datasets show
the efficacy of our methodologies and our metrics, disclosing the unfair
behavior of classic machine learning and debiasing models.
- Abstract(参考訳): 人工知能と機械学習モデルの応用は、不公平な行動の潜在的なリスクをもたらし、最近の規制に照らして、研究コミュニティの注目を集めている。
何人かの研究者は、新しい公平性の定義を探したり、偏りのある予測を特定するアプローチを開発することに焦点を合わせた。
しかし、この目的に反事実空間を活用しようとする者はいない。
本研究で提案する手法は,不注意条件下での公正な場合の非現実的推論を用いて不公平なモデル行動を明らかにすることを目的としている。
対物フェアという対物機会の対物バージョンを定義し、対物サンプルのセンシティブな情報を分析する2つの新しい指標を紹介した。
3つの異なるデータセットによる実験結果から,従来の機械学習とデバイアスモデルの不公平な振る舞いを開示し,方法論とメトリクスの有効性を示した。
関連論文リスト
- When Fairness Meets Privacy: Exploring Privacy Threats in Fair Binary
Classifiers through Membership Inference Attacks [18.27174440444256]
本研究では,公平度差分結果に基づく公平度向上モデルに対する効率的なMIA手法を提案する。
また、プライバシー漏洩を緩和するための潜在的戦略についても検討する。
論文 参考訳(メタデータ) (2023-11-07T10:28:17Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
1つの予測器が等しく機能するモデルのグループからアドホックに選択された場合、個人は害を受ける可能性があると我々は主張する。
これらの不公平性は実生活で容易に発見でき、技術的手段だけで緩和することは困難である可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-14T14:33:39Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Improving Fair Predictions Using Variational Inference In Causal Models [8.557308138001712]
アルゴリズム的公正の重要性は、機械学習が人々の生活に与える影響の増加とともに増大する。
フェアネス指標に関する最近の研究は、フェアネス制約における因果推論の必要性を示している。
本研究は、我々の倫理的・法的境界を尊重する機械学習技術に貢献することを目的としている。
論文 参考訳(メタデータ) (2020-08-25T08:27:11Z) - Fair inference on error-prone outcomes [0.0]
提案手法では, エラー発生時プロキシターゲットを用いた場合, 正当性基準の評価と校正を行う既存の手法が, 真の対象変数に拡張されないことを示す。
本稿では,統計的文献から見いだされる公正なML手法と測定モデルの組み合わせから得られる枠組みを提案する。
医療決定問題では,測定誤差を考慮に入れた潜伏変数モデルを用いることで,これまで検出された不公平さを排除できることが判明した。
論文 参考訳(メタデータ) (2020-03-17T10:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。