Dialogue State Distillation Network with Inter-Slot Contrastive Learning
for Dialogue State Tracking
- URL: http://arxiv.org/abs/2302.08220v1
- Date: Thu, 16 Feb 2023 11:05:24 GMT
- Title: Dialogue State Distillation Network with Inter-Slot Contrastive Learning
for Dialogue State Tracking
- Authors: Jing Xu, Dandan Song, Chong Liu, Siu Cheung Hui, Fei Li, Qiang Ju,
Xiaonan He, Jian Xie
- Abstract summary: Dialogue State Tracking (DST) aims to extract users' intentions from the dialogue history.
Currently, most existing approaches suffer from error propagation and are unable to dynamically select relevant information.
We propose a Dialogue State Distillation Network (DSDN) to utilize relevant information of previous dialogue states.
- Score: 25.722458066685046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In task-oriented dialogue systems, Dialogue State Tracking (DST) aims to
extract users' intentions from the dialogue history. Currently, most existing
approaches suffer from error propagation and are unable to dynamically select
relevant information when utilizing previous dialogue states. Moreover, the
relations between the updates of different slots provide vital clues for DST.
However, the existing approaches rely only on predefined graphs to indirectly
capture the relations. In this paper, we propose a Dialogue State Distillation
Network (DSDN) to utilize relevant information of previous dialogue states and
migrate the gap of utilization between training and testing. Thus, it can
dynamically exploit previous dialogue states and avoid introducing error
propagation simultaneously. Further, we propose an inter-slot contrastive
learning loss to effectively capture the slot co-update relations from dialogue
context. Experiments are conducted on the widely used MultiWOZ 2.0 and MultiWOZ
2.1 datasets. The experimental results show that our proposed model achieves
the state-of-the-art performance for DST.
Related papers
- KILDST: Effective Knowledge-Integrated Learning for Dialogue State
Tracking using Gazetteer and Speaker Information [3.342637296393915]
Dialogue State Tracking (DST) is core research in dialogue systems and has received much attention.
It is necessary to define a new problem that can deal with dialogue between users as a step toward the conversational AI that extracts and recommends information from the dialogue between users.
We introduce a new task - DST from dialogue between users about scheduling an event (DST-S)
The DST-S task is much more challenging since it requires the model to understand and track dialogue in the dialogue between users and to understand who suggested the schedule and who agreed to the proposed schedule.
arXiv Detail & Related papers (2023-01-18T07:11:56Z) - Beyond the Granularity: Multi-Perspective Dialogue Collaborative
Selection for Dialogue State Tracking [18.172993687706708]
In dialogue state tracking, dialogue history is a crucial material, and its utilization varies between different models.
We propose DiCoS-DST to dynamically select the relevant dialogue contents corresponding to each slot for state updating.
Our approach achieves new state-of-the-art performance on MultiWOZ 2.1 and MultiWOZ 2.2, and achieves superior performance on multiple mainstream benchmark datasets.
arXiv Detail & Related papers (2022-05-20T10:08:45Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue
States and Conversations [2.6529642559155944]
We propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network.
This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots.
arXiv Detail & Related papers (2021-07-12T02:30:30Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
We propose a multi-task learning model with a simple yet effective utterance tagging technique and a bidirectional language model.
Our approaches attempt to solve the problem that the performance of the baseline significantly drops when the input dialogue context sequence is long.
In our experiments, our proposed model achieves a 7.03% relative improvement over the baseline, establishing a new state-of-the-art joint goal accuracy of 52.04% on the MultiWOZ 2.0 dataset.
arXiv Detail & Related papers (2020-04-29T11:02:25Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z) - Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue
State Tracking [32.36259992245]
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation.
For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths.
We utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST.
arXiv Detail & Related papers (2020-04-07T13:46:39Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z) - Domain-Aware Dialogue State Tracker for Multi-Domain Dialogue Systems [2.3859169601259347]
In task-oriented dialogue systems the dialogue state tracker (DST) component is responsible for predicting the state of the dialogue based on the dialogue history.
We propose a domain-aware dialogue state tracker that is completely data-driven and it is modeled to predict for dynamic service schemas.
arXiv Detail & Related papers (2020-01-21T13:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.