Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue
State Tracking
- URL: http://arxiv.org/abs/2004.03386v4
- Date: Wed, 7 Oct 2020 11:19:57 GMT
- Title: Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue
State Tracking
- Authors: Su Zhu, Jieyu Li, Lu Chen, and Kai Yu
- Abstract summary: Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation.
For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths.
We utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST.
- Score: 32.36259992245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue state tracking (DST) aims at estimating the current dialogue state
given all the preceding conversation. For multi-domain DST, the data sparsity
problem is a major obstacle due to increased numbers of state candidates and
dialogue lengths. To encode the dialogue context efficiently, we utilize the
previous dialogue state (predicted) and the current dialogue utterance as the
input for DST. To consider relations among different domain-slots, the schema
graph involving prior knowledge is exploited. In this paper, a novel context
and schema fusion network is proposed to encode the dialogue context and schema
graph by using internal and external attention mechanisms. Experiment results
show that our approach can obtain new state-of-the-art performance of the
open-vocabulary DST on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.
Related papers
- Dialogue State Distillation Network with Inter-Slot Contrastive Learning
for Dialogue State Tracking [25.722458066685046]
Dialogue State Tracking (DST) aims to extract users' intentions from the dialogue history.
Currently, most existing approaches suffer from error propagation and are unable to dynamically select relevant information.
We propose a Dialogue State Distillation Network (DSDN) to utilize relevant information of previous dialogue states.
arXiv Detail & Related papers (2023-02-16T11:05:24Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue
States and Conversations [2.6529642559155944]
We propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network.
This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots.
arXiv Detail & Related papers (2021-07-12T02:30:30Z) - Multi-Domain Dialogue State Tracking based on State Graph [23.828348485513043]
We investigate the problem of multi-domain Dialogue State Tracking (DST) with open vocabulary.
Existing approaches usually previous dialogue state with dialogue history as the input to a bi-directional Transformer encoder.
We propose to construct a dialogue state graph in which domains, slots and values from the previous dialogue state are connected properly.
arXiv Detail & Related papers (2020-10-21T16:55:18Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - UniConv: A Unified Conversational Neural Architecture for Multi-domain
Task-oriented Dialogues [101.96097419995556]
"UniConv" is a novel unified neural architecture for end-to-end conversational systems in task-oriented dialogues.
We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark.
arXiv Detail & Related papers (2020-04-29T16:28:22Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
We propose a multi-task learning model with a simple yet effective utterance tagging technique and a bidirectional language model.
Our approaches attempt to solve the problem that the performance of the baseline significantly drops when the input dialogue context sequence is long.
In our experiments, our proposed model achieves a 7.03% relative improvement over the baseline, establishing a new state-of-the-art joint goal accuracy of 52.04% on the MultiWOZ 2.0 dataset.
arXiv Detail & Related papers (2020-04-29T11:02:25Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z) - Domain-Aware Dialogue State Tracker for Multi-Domain Dialogue Systems [2.3859169601259347]
In task-oriented dialogue systems the dialogue state tracker (DST) component is responsible for predicting the state of the dialogue based on the dialogue history.
We propose a domain-aware dialogue state tracker that is completely data-driven and it is modeled to predict for dynamic service schemas.
arXiv Detail & Related papers (2020-01-21T13:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.