論文の概要: A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence
- arxiv url: http://arxiv.org/abs/2302.08348v4
- Date: Thu, 13 Jun 2024 23:12:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 20:12:52.994199
- Title: A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence
- Title(参考訳): 脅威インテリジェンスにおける部分情報に基づくサイバー脆弱性優先順位付けのための頑健な統計的枠組み
- Authors: Mario Angelelli, Serena Arima, Christian Catalano, Enrico Ciavolino,
- Abstract要約: この研究は、サイバー脆弱性に関する不確実性の下で、定量的および質的な推論のための頑健な統計的枠組みを導入する。
我々は,既存の脆弱性の集合全体の部分的知識の下で,ばらつきのランクに適合する新しい精度尺度を同定する。
本稿では,サイバー脆弱性に関する部分的知識が,運用シナリオにおける脅威インテリジェンスと意思決定に与える影響について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proactive cyber-risk assessment is gaining momentum due to the wide range of sectors that can benefit from the prevention of cyber-incidents by preserving integrity, confidentiality, and the availability of data. The rising attention to cybersecurity also results from the increasing connectivity of cyber-physical systems, which generates multiple sources of uncertainty about emerging cyber-vulnerabilities. This work introduces a robust statistical framework for quantitative and qualitative reasoning under uncertainty about cyber-vulnerabilities and their prioritisation. Specifically, we take advantage of mid-quantile regression to deal with ordinal risk assessments, and we compare it to current alternatives for cyber-risk ranking and graded responses. For this purpose, we identify a novel accuracy measure suited for rank invariance under partial knowledge of the whole set of existing vulnerabilities. The model is tested on both simulated and real data from selected databases that support the evaluation, exploitation, or response to cyber-vulnerabilities in realistic contexts. Such datasets allow us to compare multiple models and accuracy measures, discussing the implications of partial knowledge about cyber-vulnerabilities on threat intelligence and decision-making in operational scenarios.
- Abstract(参考訳): サイバーリスク評価は、完全性、機密性、データの可用性を維持することによって、サイバー事故の防止から恩恵を受けることができる幅広い分野によって、勢いを増している。
サイバーセキュリティに対する関心の高まりは、サイバー物理システムの接続性の向上にも起因している。
この研究は、サイバー脆弱性とその優先順位の不確実性の下で、定量的および質的な推論のための頑健な統計的枠組みを導入する。
具体的には, 経常的リスク評価に対処するために, 潜時回帰を利用しており, サイバーリスクランキングとグレードドドレスポンスの代替案と比較する。
この目的のために,既存の脆弱性の集合全体の部分的知識の下で,ランク不変性に適した新しい精度尺度を同定する。
このモデルは、現実的な文脈におけるサイバー脆弱性に対する評価、搾取、応答をサポートする選択されたデータベースのシミュレーションデータと実データの両方でテストされる。
このようなデータセットにより、複数のモデルと精度測定値を比較し、脅威知性と運用シナリオにおける意思決定に対するサイバー脆弱性に関する部分的知識の影響を論じることができます。
関連論文リスト
- Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Inherently Interpretable and Uncertainty-Aware Models for Online Learning in Cyber-Security Problems [0.22499166814992438]
サイバーセキュリティにおけるオンライン教師あり学習問題に対する新しいパイプラインを提案する。
当社のアプローチは、予測パフォーマンスと透明性のバランスをとることを目的としています。
この研究は、解釈可能なAIの分野の成長に寄与する。
論文 参考訳(メタデータ) (2024-11-14T12:11:08Z) - Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications [0.0]
本論では,適応度とサンプル内性能に注目を移すことを優先して,サンプルのアウトオブサンプル予測性能に注目する。
以上の結果から,サイバーリスクイベントの不均一性を捉えるには,ビジネスモチベーションによるサイバーリスク分類があまりに制限的であり,柔軟性に乏しいことが示唆された。
論文 参考訳(メタデータ) (2024-10-04T04:12:34Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Enhancing Cyber Security through Predictive Analytics: Real-Time Threat Detection and Response [0.0]
調査では、ネットワークトラフィックとセキュリティイベントの2000インスタンスを含む、Kaggleのデータセットを使用している。
その結果,予測分析は脅威の警戒と応答時間を高めることが示唆された。
本稿では,予防的サイバーセキュリティ戦略開発における重要な要素として,予測分析を提唱する。
論文 参考訳(メタデータ) (2024-07-15T16:11:34Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
本稿では、サイバー攻撃(キャンプ)に対する組織の防御効果を定量化するための、脅威に富んだ確率的アプローチであるサイバー抵抗指数(CRI)を紹介する。
Threat-Intelligence Based Security Assessment (TIBSA) の方法論に基づいて、複雑な脅威のインテリジェンスを、ストックマーケットインデックスに似た、実行可能な統一されたメトリクスに変換する数学的モデルを提示します。
論文 参考訳(メタデータ) (2024-06-27T17:51:48Z) - A Data-Driven Predictive Analysis on Cyber Security Threats with Key Risk Factors [1.715270928578365]
本稿では、社会経済的要因を分析して、サイバー攻撃の犠牲者となる可能性のある個人を予測するための機械学習(ML)に基づくモデルを示す。
我々は,20個の特徴量(95.95%)で最大精度を達成した新しい特徴量ランダムフォレスト(RF)モデルを提案する。
我々は10の重要な関連ルールを生成し、実世界のデータセットで厳格に評価されたフレームワークを提示した。
論文 参考訳(メタデータ) (2024-03-28T09:41:24Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。