論文の概要: Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning
- arxiv url: http://arxiv.org/abs/2302.08476v1
- Date: Thu, 16 Feb 2023 18:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 13:04:06.904357
- Title: Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning
- Title(参考訳): 炭素計数:機械学習の排出に影響を与える要因の調査
- Authors: Alexandra Sasha Luccioni, Alex Hernandez-Garcia
- Abstract要約: 機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
- 参考スコア(独自算出の注目度): 77.62876532784759
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) requires using energy to carry out computations during
the model training process. The generation of this energy comes with an
environmental cost in terms of greenhouse gas emissions, depending on quantity
used and the energy source. Existing research on the environmental impacts of
ML has been limited to analyses covering a small number of models and does not
adequately represent the diversity of ML models and tasks. In the current
study, we present a survey of the carbon emissions of 95 ML models across time
and different tasks in natural language processing and computer vision. We
analyze them in terms of the energy sources used, the amount of CO2 emissions
produced, how these emissions evolve across time and how they relate to model
performance. We conclude with a discussion regarding the carbon footprint of
our field and propose the creation of a centralized repository for reporting
and tracking these emissions.
- Abstract(参考訳): 機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
MLの環境影響に関する既存の研究は、少数のモデルをカバーする分析に限られており、MLモデルやタスクの多様性を適切に表現していない。
本研究は,自然言語処理とコンピュータビジョンにおける時間的および異なるタスクにおける95のMLモデルの炭素排出量に関する調査である。
我々は、使用したエネルギー源、発生したCO2排出量、これらの排出量が時間の経過とともにどのように進化するか、そしてそれらがモデルの性能とどのように関係しているかを分析した。
最後に,フィールドのカーボンフットプリントに関する議論を締め括り,これらの排出量を報告・追跡するための集中型リポジトリの作成を提案する。
関連論文リスト
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference [2.553456266022126]
機械学習(ML)は大きな進歩を遂げているが、その環境のフットプリントは依然として懸念されている。
本稿では,グリーンMLの環境影響の増大を認め,グリーンMLについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:59:34Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
特に炭素フットプリントが高い大言語モデルのCO2排出量について検討した。
我々は, 二酸化炭素排出削減対策を提案することによって, 責任と持続性を有するLLMの育成を議論する。
論文 参考訳(メタデータ) (2024-04-01T15:01:45Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Exploring the Carbon Footprint of Hugging Face's ML Models: A Repository
Mining Study [8.409033836300761]
この研究には、炭素排出量に関するHugging Face Hub APIに関する最初のリポジトリマイニング研究が含まれている。
本研究は,(1)MLモデル作成者がHugging Face Hub上でどのように二酸化炭素を計測し,報告するか,(2)トレーニングMLモデルの二酸化炭素排出量にどのような影響があるのか,という2つの研究課題に答えようとしている。
論文 参考訳(メタデータ) (2023-05-18T17:52:58Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
176ビリオンパラメータ言語モデルBLOOMの炭素フットプリントを,そのライフサイクルにわたって定量化する。
BLOOMの最終訓練で約24.7トンのカルボネックが放出されたと推定する。
本稿では,機械学習モデルの炭素フットプリントを正確に推定することの難しさについて論じる。
論文 参考訳(メタデータ) (2022-11-03T17:13:48Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Curb Your Carbon Emissions: Benchmarking Carbon Emissions in Machine
Translation [0.0]
本研究では, 炭素効率について検討し, トレーニングモデルによる環境影響の低減のための代替策を提案する。
本研究では,機械翻訳モデルの性能を複数の言語対で評価する。
これらのモデルの様々なコンポーネントを調べ、これらの二酸化炭素排出量を減らすために最適化できるパイプラインの側面を分析します。
論文 参考訳(メタデータ) (2021-09-26T12:30:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。