論文の概要: Building Shortcuts between Distant Nodes with Biaffine Mapping for Graph
Convolutional Networks
- arxiv url: http://arxiv.org/abs/2302.08727v2
- Date: Mon, 20 Feb 2023 02:40:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 12:15:22.850556
- Title: Building Shortcuts between Distant Nodes with Biaffine Mapping for Graph
Convolutional Networks
- Title(参考訳): グラフ畳み込みネットワークのためのバイファインマッピングによる距離ノード間のショートカット構築
- Authors: Acong Zhang and Jincheng Huang and Ping Li and Kai Zhang
- Abstract要約: 本稿では,浅いアーキテクチャでグラフ畳み込みネットワークの表現性を向上するバイファイン手法を提案する。
提案手法は,ノードの長距離隣人への直接依存を学習することであり,ノード表現のためのリッチな情報を取得することができるのはワンホップメッセージパッシングのみである。
- 参考スコア(独自算出の注目度): 18.160610500658183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple recent studies show a paradox in graph convolutional networks
(GCNs), that is, shallow architectures limit the capability of learning
information from high-order neighbors, while deep architectures suffer from
over-smoothing or over-squashing. To enjoy the simplicity of shallow
architectures and overcome their limits of neighborhood extension, in this
work, we introduce Biaffine technique to improve the expressiveness of graph
convolutional networks with a shallow architecture. The core design of our
method is to learn direct dependency on long-distance neighbors for nodes, with
which only one-hop message passing is capable of capturing rich information for
node representation. Besides, we propose a multi-view contrastive learning
method to exploit the representations learned from long-distance dependencies.
Extensive experiments on nine graph benchmark datasets suggest that the shallow
biaffine graph convolutional networks (BAGCN) significantly outperforms
state-of-the-art GCNs (with deep or shallow architectures) on semi-supervised
node classification. We further verify the effectiveness of biaffine design in
node representation learning and the performance consistency on different sizes
of training data.
- Abstract(参考訳): 近年の複数の研究により、グラフ畳み込みネットワーク(gcns)におけるパラドックス、すなわち浅いアーキテクチャは、高階の隣人からの情報を学習する能力を制限する。
本研究では,浅層アーキテクチャの単純さを享受し,その限界を克服するために,浅層アーキテクチャを用いたグラフ畳み込みネットワークの表現性を向上するバイファイン手法を提案する。
本手法の核となる設計は、ノード表現のためのリッチな情報をキャプチャできる1ホップメッセージパッシングのみを含む、ノードの長距離近傍への直接依存を学習することである。
さらに,長距離依存から学習した表現を活用できる多視点コントラスト学習手法を提案する。
9つのグラフベンチマークデータセットの大規模な実験により、浅いバイファイングラフ畳み込みネットワーク(BAGCN)は、半教師付きノード分類における最先端のGCN(深いアーキテクチャや浅いアーキテクチャ)よりも著しく優れていることが示唆された。
さらに,ノード表現学習におけるbiaffine設計の有効性と,トレーニングデータのサイズによるパフォーマンス一貫性を検証した。
関連論文リスト
- Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
本稿では,グラフ上の拡散フィルタを統合する新しい多視点コントラスト学習手法を提案する。
複数のグラフビューを拡張として組み込むことで、異種グラフの構造的等価性を捉える。
論文 参考訳(メタデータ) (2023-08-19T17:42:02Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - Multi-Level Attention Pooling for Graph Neural Networks: Unifying Graph
Representations with Multiple Localities [4.142375560633827]
グラフニューラルネットワーク(GNN)は、グラフ構造データのベクトル表現を学ぶために広く使用されている。
潜在的な原因は、深いGNNモデルは、多くのメッセージ通過ステップを通じてノードのローカル情報を失う傾向にある。
このいわゆる過度な問題を解くために,マルチレベルアテンションプールアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-02T05:58:12Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
半教師付き異常検出のためのスキップ接続付きグラフ畳み込みネットワークを提案する。
本モデルの有効性は,5つのベンチマークデータセットに対する広範な実験によって実証された。
論文 参考訳(メタデータ) (2020-10-20T13:45:47Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。