論文の概要: Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks
- arxiv url: http://arxiv.org/abs/2302.08796v2
- Date: Mon, 20 Feb 2023 18:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 12:15:35.278814
- Title: Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks
- Title(参考訳): 物理インフォームドニューラルネットワークによるCOVID-19の疫学的ダイナミックスへのアプローチ
- Authors: Shuai Han, Lukas Stelz, Horst Stoecker, Lingxiao Wang, Kai Zhou
- Abstract要約: SIRモデルに埋め込まれた物理インフォームドニューラルネットワーク(PINN)は、感染症の時間的進化のダイナミクスを理解するために考案された。
この手法はドイツで報告された新型コロナウイルス(COVID-19)のデータに適用され、ウイルスの拡散傾向を正確に把握し予測できることが示されている。
- 参考スコア(独自算出の注目度): 23.95944607153291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A physics-informed neural network (PINN) embedded with the
susceptible-infected-removed (SIR) model is devised to understand the temporal
evolution dynamics of infectious diseases. Firstly, the effectiveness of this
approach is demonstrated on synthetic data as generated from the numerical
solution of the susceptible-asymptomatic-infected-recovered-dead (SAIRD) model.
Then, the method is applied to COVID-19 data reported for Germany and shows
that it can accurately identify and predict virus spread trends. The results
indicate that an incomplete physics-informed model can approach more
complicated dynamics efficiently. Thus, the present work demonstrates the high
potential of using machine learning methods, e.g., PINNs, to study and predict
epidemic dynamics in combination with compartmental models.
- Abstract(参考訳): SIRモデルに埋め込まれた物理インフォームドニューラルネットワーク(PINN)は、感染症の時間的進化のダイナミクスを理解するために考案された。
第一に, 本手法の有効性を, 感受性アシンプタマティック・infected-recovered-dead (saird) モデルの数値解から得られる合成データを用いて実証した。
そして、ドイツで報告された新型コロナウイルス(COVID-19)のデータに適用し、ウイルスの拡散傾向を正確に把握し予測できることを示す。
その結果,不完全な物理モデルではより複雑なダイナミクスに効率的にアプローチできることがわかった。
そこで本研究では, PINNなどの機械学習手法を用いて, コンパートメンタルモデルと組み合わせて, 流行のダイナミクスを研究・予測する可能性を示す。
関連論文リスト
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
多段階多地域流行予測のための新しいハイブリッドモデルMepoGNNを提案する。
本モデルでは, 確認症例数だけでなく, 疫学的パラメータも明示的に学習できる。
論文 参考訳(メタデータ) (2023-06-26T17:09:43Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Simulation and application of COVID-19 compartment model using
physic-informed neural network [0.0]
我々はシミュレーションと実世界のデータの両方にPhysical-Informed Neural Networkを実装した。
結果は、ニューラルネットワークから学んだ新型コロナウイルスの拡散と予測分析を含む。
論文 参考訳(メタデータ) (2022-08-04T03:59:37Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable,
Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study
from Systems Thinking and System Identification Perspectives [1.4061680807550718]
本研究では, システム工学とシステム同定手法を用いて, 透過的, 解釈可能, 擬似的, シミュラブルな動的機械学習モデルを構築することを提案する。
TIPSモデルは、よく知られたNARMAX(Nonlinear AutoRegressive moving Average with eXogenous inputs)モデルに基づいて開発されている。
論文 参考訳(メタデータ) (2021-11-01T08:42:37Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Semi-supervised Neural Networks solve an inverse problem for modeling
Covid-19 spread [61.9008166652035]
半教師付きニューラルネットワークを用いた新型コロナウイルスの感染拡大について検討した。
我々は、人口の受動的一部がウイルスの動態から分離されていると仮定する。
論文 参考訳(メタデータ) (2020-10-10T19:33:53Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
専門的なニューラルネットワークを用いた疫学モデリングの新たな組み合わせを提案する。
我々は, 発生時間, 未検出感染数, 症状発症前の感染可能性, および, 非常に適度な量の実世界の観測による遅延の報告など, 重要な疾患特性に関する信頼性の高い確率推定値を得ることができる。
論文 参考訳(メタデータ) (2020-10-01T11:01:49Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。