論文の概要: Lip-to-Speech Synthesis in the Wild with Multi-task Learning
- arxiv url: http://arxiv.org/abs/2302.08841v1
- Date: Fri, 17 Feb 2023 12:31:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 14:52:12.712487
- Title: Lip-to-Speech Synthesis in the Wild with Multi-task Learning
- Title(参考訳): マルチタスク学習による野生における口唇合成
- Authors: Minsu Kim, Joanna Hong, Yong Man Ro
- Abstract要約: 野生環境においても入力された唇の動きから正しい内容で音声を再構成できる強力なLip2Speech法を開発した。
音響特徴再構成損失の単語表現不足を補うために,マルチモーダル・インスペクション(テキストと音声)を用いてモデルを指導するマルチタスク学習を設計する。
- 参考スコア(独自算出の注目度): 32.65865343643458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown impressive performance in Lip-to-speech synthesis
that aims to reconstruct speech from visual information alone. However, they
have been suffering from synthesizing accurate speech in the wild, due to
insufficient supervision for guiding the model to infer the correct content.
Distinct from the previous methods, in this paper, we develop a powerful
Lip2Speech method that can reconstruct speech with correct contents from the
input lip movements, even in a wild environment. To this end, we design
multi-task learning that guides the model using multimodal supervision, i.e.,
text and audio, to complement the insufficient word representations of acoustic
feature reconstruction loss. Thus, the proposed framework brings the advantage
of synthesizing speech containing the right content of multiple speakers with
unconstrained sentences. We verify the effectiveness of the proposed method
using LRS2, LRS3, and LRW datasets.
- Abstract(参考訳): 近年の研究では、視覚情報のみから音声を再構築することを目的とした、口唇合成における印象的な性能が示されている。
しかし、モデルが正しい内容の推測を導くための監督が不十分なため、野生での正確な音声合成に苦慮している。
本稿では,従来の方法とは異なり,自然環境においても入力唇運動から正しい内容の音声を再構成できる強力なlip2speech法を開発した。
この目的のために,マルチモーダル・インスペクション(テキストと音声)を用いてモデルを指導するマルチタスク学習を設計し,音響特徴再構成損失の表現不足を補う。
そこで,提案手法は,制約のない複数の話者の適切な内容を含む音声を合成する利点をもたらす。
LRS2, LRS3, LRWデータセットを用いて提案手法の有効性を検証する。
関連論文リスト
- Towards Accurate Lip-to-Speech Synthesis in-the-Wild [31.289366690147556]
そこで本研究では,唇の動きのみをベースとしたサイレントビデオから音声を合成する手法を提案する。
リップビデオから直接音声を生成する従来のアプローチは、音声だけで堅牢な言語モデルを学べないという課題に直面している。
我々は,我々のモデルに言語情報を注入する最先端のリップ・トゥ・テキスト・ネットワークを用いて,ノイズの多いテキスト管理を導入することを提案する。
論文 参考訳(メタデータ) (2024-03-02T04:07:24Z) - DiffV2S: Diffusion-based Video-to-Speech Synthesis with Vision-guided
Speaker Embedding [52.84475402151201]
自己教師付き事前学習モデルと即時チューニング技術を用いた視覚誘導型話者埋め込み抽出器を提案する。
さらに,DiffV2Sと呼ばれる拡散型音声合成モデルを開発し,これらの話者埋め込みと入力ビデオから抽出した視覚表現を条件とした。
実験結果から,DiffV2Sは従来の音声合成技術と比較して最先端性能を実現していることがわかった。
論文 参考訳(メタデータ) (2023-08-15T14:07:41Z) - Lip2Vec: Efficient and Robust Visual Speech Recognition via
Latent-to-Latent Visual to Audio Representation Mapping [4.271091833712731]
従来のモデルから学習するシンプルなアプローチであるLip2Vecを提案する。
提案手法は LRS3 データセット上で26 WER を達成する完全教師付き学習法と比較した。
我々は、VSRをASRタスクとして再プログラムすることで、両者のパフォーマンスギャップを狭め、より柔軟な唇読解法を構築することができると考えている。
論文 参考訳(メタデータ) (2023-08-11T12:59:02Z) - RobustL2S: Speaker-Specific Lip-to-Speech Synthesis exploiting
Self-Supervised Representations [13.995231731152462]
本稿では,Lip-to-Speech合成のためのモジュール化フレームワークRobustL2Sを提案する。
非自己回帰列列列モデルは、自己教師付き視覚特徴を非絡み合った音声内容の表現にマッピングする。
ボコーダは、音声特徴を生波形に変換する。
論文 参考訳(メタデータ) (2023-07-03T09:13:57Z) - Zero-shot personalized lip-to-speech synthesis with face image based
voice control [41.17483247506426]
顔画像から対応する音声を予測するLip-to-Speech(Lip2Speech)合成は、様々なモデルや訓練戦略で大きく進歩している。
顔画像が話者の身元を制御するゼロショットパーソナライズされたLip2Speech合成法を提案する。
論文 参考訳(メタデータ) (2023-05-09T02:37:29Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeechは、両側摂動を伴う音声から音声への翻訳モデルである。
我々は,非自己回帰S2ST手法を構築し,繰り返しマスキングを行い,単位選択を予測する。
TranSpeechは推論遅延を大幅に改善し、自動回帰技術よりも最大21.4倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2022-05-25T06:34:14Z) - SVTS: Scalable Video-to-Speech Synthesis [105.29009019733803]
本稿では,ビデオ・トゥ・スペクトログラム予測器と事前学習したニューラルボコーダの2つのコンポーネントからなるスケーラブルなビデオ音声合成フレームワークを提案する。
私たちは、挑戦的なLSS3データセットで不可解な結果を示す最初の人です。
論文 参考訳(メタデータ) (2022-05-04T13:34:07Z) - LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction
and Lip Reading [24.744371143092614]
本研究の目的は、ビデオ中の音声と視覚ストリームの自然な共起を利用して、音声再構成(ビデオから音声)のためのクロスモーダル自己教師による事前学習の効果を検討することである。
本稿では,エンコーダ・デコーダアーキテクチャと位置認識型アテンション機構を組み合わせたLipSound2を提案する。
論文 参考訳(メタデータ) (2021-12-09T08:11:35Z) - Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning
for Low-Resource Speech Recognition [159.9312272042253]
Wav-BERTは、協調的な音響および言語表現学習法である。
我々は、事前訓練された音響モデル(wav2vec 2.0)と言語モデル(BERT)をエンドツーエンドのトレーニング可能なフレームワークに統合する。
論文 参考訳(メタデータ) (2021-09-19T16:39:22Z) - LiRA: Learning Visual Speech Representations from Audio through
Self-supervision [53.18768477520411]
セルフスーパービジョン(LiRA)による音声からの視覚的表現の学習を提案する。
具体的には、ResNet+Conformerモデルをトレーニングし、未学習の視覚音声から音響的特徴を予測する。
提案手法は,WildデータセットのLip Readingにおいて,他の自己教師的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-16T23:20:06Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。