論文の概要: Designing and Evaluating Interfaces that Highlight News Coverage
Diversity Using Discord Questions
- arxiv url: http://arxiv.org/abs/2302.08997v1
- Date: Fri, 17 Feb 2023 16:59:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 13:56:33.896227
- Title: Designing and Evaluating Interfaces that Highlight News Coverage
Diversity Using Discord Questions
- Title(参考訳): 音声質問を用いたニュース記事の多様性を高めるインタフェースの設計と評価
- Authors: Philippe Laban, Chien-Sheng Wu, Lidiya Murakhovs'ka, Xiang 'Anthony'
Chen, Caiming Xiong
- Abstract要約: 本稿は,ニュース記事のための大規模なソースコレクションをナビゲートすることは,それ以上のガイダンスなしでは困難であることを示す。
本稿では,ニュース読者が読みながら範囲の多様性を発見することを目的とした,注釈記事,要約記事,質問表の3つのインタフェースを設計する。
- 参考スコア(独自算出の注目度): 84.55145223950427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern news aggregators do the hard work of organizing a large news stream,
creating collections for a given news story with tens of source options. This
paper shows that navigating large source collections for a news story can be
challenging without further guidance. In this work, we design three interfaces
-- the Annotated Article, the Recomposed Article, and the Question Grid --
aimed at accompanying news readers in discovering coverage diversity while they
read. A first usability study with 10 journalism experts confirms the designed
interfaces all reveal coverage diversity and determine each interface's
potential use cases and audiences. In a second usability study, we developed
and implemented a reading exercise with 95 novice news readers to measure
exposure to coverage diversity. Results show that Annotated Article users are
able to answer questions 34% more completely than with two existing interfaces
while finding the interface equally easy to use.
- Abstract(参考訳): 現代のニュースアグリゲータは、大きなニュースストリームを整理し、数十のソースオプションで、特定のニュースストーリーのコレクションを作成する。
本稿は,ニュース記事のための大規模なソースコレクションをナビゲートすることは,さらなるガイダンスなしでは困難であることを示す。
本研究は,3つのインタフェース,注釈記事,要約記事,質問表の3つを,ニュース読者が読書中にカバー範囲の多様性を見出すのに参考に設計したものである。
10人のジャーナリズム専門家による最初のユーザビリティ調査では、デザインされたインターフェースはすべてカバレッジの多様性を明らかにし、各インターフェースの潜在的なユースケースとオーディエンスを決定する。
第2のユーザビリティスタディでは,95人の初心者ニュースリーダによる読解演習を開発・実施し,カバレッジの多様性を計測した。
その結果,アノテート記事のユーザは,既存の2つのインターフェースよりも34%完全に回答できると同時に,インターフェースの使いやすさも同等であることがわかった。
関連論文リスト
- A Multilingual Similarity Dataset for News Article Frame [14.977682986280998]
16,687の新しいラベル付きペアを用いた大規模ラベル付きニュース記事データセットの拡張版を導入する。
本手法は,従来のニュースフレーム分析研究において,フレームクラスを手動で識別する作業を自由化する。
全体としては10言語にまたがって26,555のラベル付きニュース記事ペアで利用可能な、最も広範な言語間ニュース記事類似性データセットを紹介します。
論文 参考訳(メタデータ) (2024-05-22T01:01:04Z) - FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFakeは、フェイクニュース検出のためのマルチドメイン知識強化ベンチマークである。
FineFakeは6つのセマンティックトピックと8つのプラットフォームにまたがる16,909のデータサンプルを含んでいる。
FineFakeプロジェクト全体がオープンソースリポジトリとして公開されている。
論文 参考訳(メタデータ) (2024-03-30T14:39:09Z) - From Nuisance to News Sense: Augmenting the News with Cross-Document
Evidence and Context [25.870137795858522]
本稿では,複数のニュース記事からの情報を中心的な話題に集め統合するための,新しいセンスメイキングツールと読書インタフェースであるNEWSSENSEを紹介する。
NEWSSENSEは、異なるソースからの関連記事にリンクすることで、ユーザの選択を集中的に根拠づけた記事を強化する。
我々のパイロット研究は、NEWSSENSEがユーザーが重要な情報を識別し、ニュース記事の信頼性を確認し、異なる視点を探索するのに役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-06T21:15:11Z) - TieFake: Title-Text Similarity and Emotion-Aware Fake News Detection [15.386007761649251]
本稿では,マルチモーダルな文脈情報と著者の感情を共同でモデル化し,テキストの類似性と感情認識型フェイクニュース検出(TieFake)手法を提案する。
具体的には、BERT と ResNeSt を用いて、テキストや画像の表現を学習し、出版者感情抽出器を用いて、ニュースコンテンツにおける著者の主観的感情をキャプチャする。
論文 参考訳(メタデータ) (2023-04-19T04:47:36Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
本稿では,研究論文を対象とした動的読解インタフェースの自動作成を目的としたセマンティック・リーダー・プロジェクトについて述べる。
10のプロトタイプインターフェースが開発され、300人以上の参加者と現実世界のユーザが読書体験を改善している。
本論文は,研究論文を読む際,学者と公衆の面を巡って構築する。
論文 参考訳(メタデータ) (2023-03-25T02:47:09Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - NewsEdits: A News Article Revision Dataset and a Document-Level
Reasoning Challenge [122.37011526554403]
NewsEditsは、最初に公開されたニュースリビジョン履歴のデータセットである。
120万記事と、22以上の英語とフランス語の新聞ソースから460万バージョンを収録している。
論文 参考訳(メタデータ) (2022-06-14T18:47:13Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSumは、インタラクティブな要約と顔検索を統合している。
微粒なファセットは、クロスドキュメントのコア参照パイプラインに基づいて自動的に生成される。
論文 参考訳(メタデータ) (2021-09-23T20:01:11Z) - Deep Dynamic Neural Network to trade-off between Accuracy and Diversity
in a News Recommender System [1.3126169294309855]
本稿では,ニュースと読者の興味を統一した枠組みで学習する深層ニューラルネットワークを提案する。
読者のクリック履歴から読者の長期的関心、LSTMSによる最近のクリックからの短期的関心、および注意メカニズムを通じて多様な読者の興味を学びます。
論文 参考訳(メタデータ) (2021-03-15T15:30:25Z) - BaitWatcher: A lightweight web interface for the detection of
incongruent news headlines [27.29585619643952]
BaitWatcherは軽量なWebインターフェースで、ニュース記事の見出しをクリックする前に、読者が不一致の可能性を推定する。
BaiittWatcherは階層的リカレントエンコーダを使用して、ニュース見出しとその関連するボディテキストの複雑なテキスト表現を効率的に学習する。
論文 参考訳(メタデータ) (2020-03-23T23:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。