Cost-effective Models for Detecting Depression from Speech
- URL: http://arxiv.org/abs/2302.09214v1
- Date: Sat, 18 Feb 2023 02:46:21 GMT
- Title: Cost-effective Models for Detecting Depression from Speech
- Authors: Mashrura Tasnim and Jekaterina Novikova
- Abstract summary: Depression is the most common psychological disorder and is considered as a leading cause of disability and suicide worldwide.
A system capable of detecting signs of depression in human speech can contribute to ensuring timely and effective mental health care for individuals suffering from the disorder.
- Score: 4.269268432906194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is the most common psychological disorder and is considered as a
leading cause of disability and suicide worldwide. An automated system capable
of detecting signs of depression in human speech can contribute to ensuring
timely and effective mental health care for individuals suffering from the
disorder. Developing such automated system requires accurate machine learning
models, capable of capturing signs of depression. However, state-of-the-art
models based on deep acoustic representations require abundant data, meticulous
selection of features, and rigorous training; the procedure involves enormous
computational resources. In this work, we explore the effectiveness of two
different acoustic feature groups - conventional hand-curated and deep
representation features, for predicting the severity of depression from speech.
We explore the relevance of possible contributing factors to the models'
performance, including gender of the individual, severity of the disorder,
content and length of speech. Our findings suggest that models trained on
conventional acoustic features perform equally well or better than the ones
trained on deep representation features at significantly lower computational
cost, irrespective of other factors, e.g. content and length of speech, gender
of the speaker and severity of the disorder. This makes such models a better
fit for deployment where availability of computational resources is restricted,
such as real time depression monitoring applications in smart devices.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Selfsupervised learning for pathological speech detection [0.0]
Speech production is susceptible to influence and disruption by various neurodegenerative pathological speech disorders.
These disorders lead to pathological speech characterized by abnormal speech patterns and imprecise articulation.
Unlike neurotypical speakers, patients with speech pathologies or impairments are unable to access various virtual assistants such as Alexa, Siri, etc.
arXiv Detail & Related papers (2024-05-16T07:12:47Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
The early identification of symptoms of memory disorders plays a significant role in ensuring the well-being of populations.
The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language.
The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses.
arXiv Detail & Related papers (2024-02-02T17:06:03Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
We introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety screening tools.
This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information.
We present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Dynamic Graph Representation Learning for Depression Screening with
Transformer [13.551342607089184]
Social media platforms present research opportunities to investigate mental health and potentially detect instances of mental illness.
Existing depression detection methods are constrained due to the reliance on feature engineering and the lack of consideration for time-varying factors.
We propose ContrastEgo, which treats each user as a dynamic time-evolving attributed graph (ego-network)
We show that ContrastEgo significantly outperforms the state-of-the-art methods in terms of all the effectiveness metrics in various experimental settings.
arXiv Detail & Related papers (2023-05-10T20:34:40Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Multimodal Depression Severity Prediction from medical bio-markers using
Machine Learning Tools and Technologies [0.0]
Depression has been a leading cause of mental-health illnesses across the world.
Using behavioural cues to automate depression diagnosis and stage prediction in recent years has relatively increased.
The absence of labelled behavioural datasets and a vast amount of possible variations prove to be a major challenge in accomplishing the task.
arXiv Detail & Related papers (2020-09-11T20:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.