Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions
- URL: http://arxiv.org/abs/2502.03965v1
- Date: Thu, 06 Feb 2025 10:57:10 GMT
- Title: Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions
- Authors: Himanshi Singh, Sadhana Tiwari, Sonali Agarwal, Ritesh Chandra, Sanjay Kumar Sonbhadra, Vrijendra Singh,
- Abstract summary: An advanced multimodal deep learning system for the automated classification of PTSD and depression is presented in this paper.
The proposed method achieves classification accuracies of 92% for depression and 93% for PTSD, outperforming traditional unimodal approaches.
- Score: 0.9297614330263184
- License:
- Abstract: Individual's general well-being is greatly impacted by mental health conditions including depression and Post-Traumatic Stress Disorder (PTSD), underscoring the importance of early detection and precise diagnosis in order to facilitate prompt clinical intervention. An advanced multimodal deep learning system for the automated classification of PTSD and depression is presented in this paper. Utilizing textual and audio data from clinical interview datasets, the method combines features taken from both modalities by combining the architectures of LSTM (Long Short Term Memory) and BiLSTM (Bidirectional Long Short-Term Memory).Although text features focus on speech's semantic and grammatical components; audio features capture vocal traits including rhythm, tone, and pitch. This combination of modalities enhances the model's capacity to identify minute patterns connected to mental health conditions. Using test datasets, the proposed method achieves classification accuracies of 92% for depression and 93% for PTSD, outperforming traditional unimodal approaches and demonstrating its accuracy and robustness.
Related papers
- Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives [84.03001845263]
Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management.
Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax.
We propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time.
arXiv Detail & Related papers (2025-01-07T12:16:26Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech [0.0]
This study explores the application of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models on wavelet extracted features and Mel-frequency Cepstral Coefficients (MFCCs) for emotion detection from spoken speech.
Data augmentation techniques, feature extraction, normalization, and model training were conducted to evaluate the models' performance in classifying emotional states.
arXiv Detail & Related papers (2024-12-12T22:55:11Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
This study presents a comprehensive approach to identify distinctive speech patterns through the analysis of examiner-patient dialogues.
We extracted 40 speech-related features, categorized into frequency, zero-crossing rate, energy, spectral characteristics, Mel Frequency Cepstral Coefficients (MFCCs) and balance.
The classification model aimed to differentiate between ASD and non-ASD cases, achieving an accuracy of 87.75%.
arXiv Detail & Related papers (2024-05-03T02:59:15Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
The early identification of symptoms of memory disorders plays a significant role in ensuring the well-being of populations.
The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language.
The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses.
arXiv Detail & Related papers (2024-02-02T17:06:03Z) - Mental Health Diagnosis in the Digital Age: Harnessing Sentiment
Analysis on Social Media Platforms upon Ultra-Sparse Feature Content [3.6195994708545016]
We propose a novel semantic feature preprocessing technique with a three-folded structure.
With enhanced semantic features, we train a machine learning model to predict and classify mental disorders.
Our methods, when compared to seven benchmark models, demonstrate significant performance improvements.
arXiv Detail & Related papers (2023-11-09T00:15:06Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
We introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety screening tools.
This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information.
We present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.