論文の概要: Stochastic Approximation Approaches to Group Distributionally Robust
Optimization
- arxiv url: http://arxiv.org/abs/2302.09267v3
- Date: Sun, 29 Oct 2023 09:26:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 23:16:49.143333
- Title: Stochastic Approximation Approaches to Group Distributionally Robust
Optimization
- Title(参考訳): 群分布ロバスト最適化に対する確率近似手法
- Authors: Lijun Zhang, Peng Zhao, Zhen-Hua Zhuang, Tianbao Yang, Zhi-Hua Zhou
- Abstract要約: 群分散ロバスト最適化(GDRO)
オンライン学習技術は、各ラウンドに必要なサンプル数をm$から1$に減らし、同じサンプルを保持する。
分布依存収束率を導出できる重み付きGDROの新規な定式化。
- 参考スコア(独自算出の注目度): 96.26317627118912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates group distributionally robust optimization (GDRO),
with the purpose to learn a model that performs well over $m$ different
distributions. First, we formulate GDRO as a stochastic convex-concave
saddle-point problem, and demonstrate that stochastic mirror descent (SMD),
using $m$ samples in each iteration, achieves an $O(m (\log m)/\epsilon^2)$
sample complexity for finding an $\epsilon$-optimal solution, which matches the
$\Omega(m/\epsilon^2)$ lower bound up to a logarithmic factor. Then, we make
use of techniques from online learning to reduce the number of samples required
in each round from $m$ to $1$, keeping the same sample complexity.
Specifically, we cast GDRO as a two-players game where one player simply
performs SMD and the other executes an online algorithm for non-oblivious
multi-armed bandits. Next, we consider a more practical scenario where the
number of samples that can be drawn from each distribution is different, and
propose a novel formulation of weighted GDRO, which allows us to derive
distribution-dependent convergence rates. Denote by $n_i$ the sample budget for
the $i$-th distribution, and assume $n_1 \geq n_2 \geq \cdots \geq n_m$. In the
first approach, we incorporate non-uniform sampling into SMD such that the
sample budget is satisfied in expectation, and prove that the excess risk of
the $i$-th distribution decreases at an $O(\sqrt{n_1 \log m}/n_i)$ rate. In the
second approach, we use mini-batches to meet the budget exactly and also reduce
the variance in stochastic gradients, and then leverage stochastic mirror-prox
algorithm, which can exploit small variances, to optimize a carefully designed
weighted GDRO problem. Under appropriate conditions, it attains an $O((\log
m)/\sqrt{n_i})$ convergence rate, which almost matches the optimal
$O(\sqrt{1/n_i})$ rate of only learning from the $i$-th distribution with $n_i$
samples.
- Abstract(参考訳): 本稿では,群分布にロバストな最適化(gdro, group distributionally robust optimization)について検討する。
まず、GDROを確率的凸凹サドル点問題として定式化し、各反復において$m$のサンプルを用いて、$O(m)/\epsilon^2)$のサンプル複雑性を達成し、$Omega(m/\epsilon^2)$の対数係数に一致する$\epsilon$最適解を求める。
そして、オンライン学習の手法を使って、各ラウンドに必要なサンプル数を$m$から$$$に減らし、同じサンプルの複雑さを維持します。
具体的には、GDROを2人プレイヤゲームとして、一方のプレイヤーが単にSMDを実行し、他方のプレイヤーが非公開マルチアームバンディットのオンラインアルゴリズムを実行する。
次に,各分布から抽出できるサンプルの数が異なる,より実用的なシナリオを考察し,分布依存収束率の導出を可能にする重み付きGDROの新しい定式化を提案する。
n_i$ は$i$-th分布のサンプル予算を示し、$n_1 \geq n_2 \geq \cdots \geq n_m$ を仮定する。
最初のアプローチでは、サンプル予算が期待通りに満たされるように非一様サンプリングをsmdに組み込んで、$i$-th分布の過剰なリスクが$o(\sqrt{n_1 \log m}/n_i)$レートで減少することを証明する。
第2のアプローチでは、予算を正確に満たすためにミニバッチを使用し、確率勾配の分散を低減し、さらに小さな分散を活用可能な確率ミラープロキシアルゴリズムを利用して、慎重に設計された重み付きGDRO問題を最適化する。
適切な条件下では、$o((\log m)/\sqrt{n_i})$の収束率に達し、最適な$o(\sqrt{1/n_i})$の値にほぼ一致する。
関連論文リスト
- Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでのみ実行できるように並列化可能であることを示す。
また、我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでしか実行できないことを示す。
論文 参考訳(メタデータ) (2024-06-03T01:34:34Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Efficient Algorithms for Empirical Group Distributional Robust
Optimization and Beyond [15.664414751701718]
経験的GDROを$textittwo-level$ finite-sum convex-concave minimax Optimization問題として定式化する。
我々は、スナップショットとミラースナップショットポイントを1インデックスシフトした重み付き平均で計算し、単純エルゴディック平均と区別する。
注目すべきは、我々の手法が最先端の手法よりも$sqrtm$で優れていることだ。
論文 参考訳(メタデータ) (2024-03-06T09:14:24Z) - Perfect Sampling from Pairwise Comparisons [26.396901523831534]
分散分布$mathcalD$の与えられたアクセスから最適なサンプルを効率よく取得する方法を,サポート対象の要素のペア比較に限定して検討する。
固定分布が$mathcalD$と一致するマルコフ連鎖を設計し、過去からの結合技術を用いて正確なサンプルを得るアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-11-23T11:20:30Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
社会と現実世界の考察は、マルチディストリビューション学習パラダイムの台頭につながっている。
これらの学習パラダイムの最適なサンプル複雑性を確立し、このサンプル複雑性を満たすアルゴリズムを提供する。
アルゴリズムの設計と解析は,ゼロサムゲーム解決のためのオンライン学習手法の拡張によって実現されている。
論文 参考訳(メタデータ) (2022-10-22T19:07:26Z) - Robust Learning of Optimal Auctions [84.13356290199603]
本研究では、入札者の評価値のサンプルを逆向きに破損させたり、逆向きに歪んだ分布から引き出すことができる場合に、サンプルから収益-最適マルチバイダオークションを学習する問題について検討する。
我々は,コルモゴロフ-スミルノフ距離における元の分布に対して$alpha$-closeの「全ての真の分布」に対して,収入がほぼ同時に最適であるメカニズムを学習できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-13T17:37:21Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
モデルに基づくMARLは、Nash平衡値(NE)を求めるために$tilde O(|S||B|(gamma)-3epsilon-2)$のサンプル複雑性を実現する。
また、アルゴリズムが報酬に依存しない場合、そのようなサンプル境界は最小値(対数因子まで)であり、アルゴリズムは報酬知識のない遷移サンプルを問合せする。
論文 参考訳(メタデータ) (2020-07-15T03:25:24Z) - A Provably Efficient Sample Collection Strategy for Reinforcement
Learning [123.69175280309226]
オンライン強化学習(RL)における課題の1つは、エージェントがその振る舞いを最適化するために、環境の探索とサンプルの活用をトレードオフする必要があることである。
1) 生成モデル(環境のスパースシミュレータなど)にアクセス可能な状態のサンプル数を規定する「対象別」アルゴリズム,2) 所定のサンプルをできるだけ早く生成する「対象別」サンプル収集。
論文 参考訳(メタデータ) (2020-07-13T15:17:35Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
本稿では、生成モデル(シミュレータ)へのアクセスを想定して、強化学習のサンプル効率について検討する。
最初に$gamma$-discounted infinite-horizon Markov decision process (MDPs) with state space $mathcalS$ and action space $mathcalA$を考える。
対象の精度を考慮すれば,モデルに基づく計画アルゴリズムが最小限のサンプルの複雑さを実現するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-05-26T17:53:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。