論文の概要: Why is parameter averaging beneficial in SGD? An objective smoothing perspective
- arxiv url: http://arxiv.org/abs/2302.09376v2
- Date: Sun, 26 May 2024 11:54:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 12:47:48.164099
- Title: Why is parameter averaging beneficial in SGD? An objective smoothing perspective
- Title(参考訳): SGDにおけるパラメータ平均化はなぜ有益か? : 客観的スムースティングの視点から
- Authors: Atsushi Nitanda, Ryuhei Kikuchi, Shugo Maeda, Denny Wu,
- Abstract要約: 勾配降下(SGD)とその暗黙バイアスは、しばしばミニマの鋭さによって特徴づけられる。
Izmailov et alで実証的に観察された一般用平均SGDアルゴリズムについて検討した。
本研究では,SGDの平均値が局所的な局所最小値を回避するスムーズな目的を効率的に最適化できることを証明した。
- 参考スコア(独自算出の注目度): 13.863368438870562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is often observed that stochastic gradient descent (SGD) and its variants implicitly select a solution with good generalization performance; such implicit bias is often characterized in terms of the sharpness of the minima. Kleinberg et al. (2018) connected this bias with the smoothing effect of SGD which eliminates sharp local minima by the convolution using the stochastic gradient noise. We follow this line of research and study the commonly-used averaged SGD algorithm, which has been empirically observed in Izmailov et al. (2018) to prefer a flat minimum and therefore achieves better generalization. We prove that in certain problem settings, averaged SGD can efficiently optimize the smoothed objective which avoids sharp local minima. In experiments, we verify our theory and show that parameter averaging with an appropriate step size indeed leads to significant improvement in the performance of SGD.
- Abstract(参考訳): 確率勾配降下(SGD)とその変種は、良い一般化性能を持つ解を暗黙的に選択することがしばしば観察され、そのような暗黙バイアスは、ミニマの鋭さの点でしばしば特徴づけられる。
Kleinberg et al (2018) はこのバイアスと SGD の滑らかな効果を結びつけ、確率勾配雑音を用いた畳み込みによる急激な局所最小値の除去を行った。
我々は、Izmailov et al (2018)で実証的に観察されている一般的な平均SGDアルゴリズムを、平坦な最小値を好むために研究し、その結果、より良い一般化を実現する。
本研究では, ある問題設定において, 局所最小値の急激な最小化を回避するために, 平均値SGDを効率よく最適化できることを証明した。
実験では,本理論を検証し,適切なステップサイズでのパラメータ平均化がSGDの性能を著しく向上させることを示す。
関連論文リスト
- Langevin Dynamics: A Unified Perspective on Optimization via Lyapunov Potentials [15.718093624695552]
我々は、リアプノフポテンシャルと最適化に基づいて、グラディエント・ランゲヴィン・ダイナミクス(SGLD)のグローバル・ミニマへの収束を分析する。
2) SGLD に対する最初の有限勾配複雑性、3) 連続時間ランゲヴィンダイナミクスが最適化に成功するなら、次に離散時間 SGLD が穏やかな正則性仮定の下で成功することを証明する。
論文 参考訳(メタデータ) (2024-07-05T05:34:10Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
微分不可能な関数を断片的に定義するための単純なフレームワークを導入し,スムース化を得るための体系的なアプローチを提案する。
我々の主な貢献は SGD の新たな変種 Diagonalisation Gradient Descent であり、滑らかな近似の精度を徐々に向上させる。
我々のアプローチは単純で高速で安定であり、作業正規化分散の桁数削減を実現している。
論文 参考訳(メタデータ) (2024-02-19T00:43:22Z) - Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in
Private SGD [56.01810892677744]
DP-SGDにおいて,サンプルごとの勾配ノルムとプライベート勾配オラクルの推定バイアスの関連性を示す。
BAM(Bias-Aware Minimisation)を提案する。
論文 参考訳(メタデータ) (2023-08-23T09:20:41Z) - Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves
Generalization [33.50116027503244]
ゼロ階平坦性は低勾配誤差で最小値の判別に不十分であることを示す。
また,全方向にわたって一様に曲率の小さい最小値を求めるため,GAM(Gradient norm Aware Minimization)と呼ばれる新しいトレーニング手順を提案する。
論文 参考訳(メタデータ) (2023-03-03T16:58:53Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - How Can Increased Randomness in Stochastic Gradient Descent Improve
Generalization? [0.0]
一般化におけるSGD学習率とバッチサイズの役割について検討する。
SGD温度の上昇は局所的微小腫の曲率低下を助長することを示した。
論文 参考訳(メタデータ) (2021-08-21T13:18:49Z) - The Benefits of Implicit Regularization from SGD in Least Squares
Problems [116.85246178212616]
勾配降下(SGD)はアルゴリズム正則化効果が強い。
我々は、(正規化されていない)平均SGDで得られる暗黙の正則化とリッジ回帰の明示的な正則化の比較を行う。
論文 参考訳(メタデータ) (2021-08-10T09:56:47Z) - Label Noise SGD Provably Prefers Flat Global Minimizers [48.883469271546076]
過度パラメータ化モデルでは、勾配降下(SGD)のノイズは最適化軌道を暗黙的に規則化し、どの局所最小SGDが収束するかを決定する。
ラベルノイズを持つSGDが正規化損失$L(theta) +lambda R(theta)$の定常点に収束することを示す。
解析の結果,線形スケーリング法則を超越した大規模学習率の正規化効果が明らかとなった。
論文 参考訳(メタデータ) (2021-06-11T17:59:07Z) - Direction Matters: On the Implicit Bias of Stochastic Gradient Descent
with Moderate Learning Rate [105.62979485062756]
本稿では,中等度学習におけるSGDの特定の正規化効果を特徴付けることを試みる。
SGDはデータ行列の大きな固有値方向に沿って収束し、GDは小さな固有値方向に沿って収束することを示す。
論文 参考訳(メタデータ) (2020-11-04T21:07:52Z) - Towards Theoretically Understanding Why SGD Generalizes Better Than ADAM
in Deep Learning [165.47118387176607]
ADAMライクな適応勾配アルゴリズムが、学習速度が速いにもかかわらず、SGDよりも悪い一般化性能に苦しむ理由は不明である。
具体的には,これらのアルゴリズムの勾配雑音の重みを観測する。
論文 参考訳(メタデータ) (2020-10-12T12:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。