論文の概要: Mixed Hierarchy Network for Image Restoration
- arxiv url: http://arxiv.org/abs/2302.09554v4
- Date: Tue, 28 Nov 2023 11:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 16:51:25.632835
- Title: Mixed Hierarchy Network for Image Restoration
- Title(参考訳): 画像復元のための混合階層ネットワーク
- Authors: Hu Gao and Depeng Dang
- Abstract要約: 画像復元における品質とシステムの複雑さのバランスをとることができる混合階層ネットワークを提案する。
我々のモデルはまずエンコーダ・デコーダアーキテクチャを用いて文脈情報を学習し,次に空間的詳細を保存する高分解能分岐と組み合わせる。
その結果、MHNetという名前の密接な相互接続階層アーキテクチャは、いくつかのイメージ復元タスクにおいて、強力なパフォーマンス向上をもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration is a long-standing low-level vision problem, e.g.,
deblurring and deraining. In the process of image restoration, it is necessary
to consider not only the spatial details and contextual information of
restoration to ensure the quality, but also the system complexity. Although
many methods have been able to guarantee the quality of image restoration, the
system complexity of the state-of-the-art (SOTA) methods is increasing as well.
Motivated by this, we present a mixed hierarchy network that can balance these
competing goals. Our main proposal is a mixed hierarchy architecture, that
progressively recovers contextual information and spatial details from degraded
images while we design intra-blocks to reduce system complexity. Specifically,
our model first learns the contextual information using encoder-decoder
architectures, and then combines them with high-resolution branches that
preserve spatial detail. In order to reduce the system complexity of this
architecture for convenient analysis and comparison, we replace or remove the
nonlinear activation function with multiplication and use a simple network
structure. In addition, we replace spatial convolution with global
self-attention for the middle block of encoder-decoder. The resulting tightly
interlinked hierarchy architecture, named as MHNet, delivers strong performance
gains on several image restoration tasks, including image deraining, and
deblurring.
- Abstract(参考訳): 画像復元は、デブラリングやデレイニングなど、長期にわたる低レベルの視覚問題である。
画像復元の過程では,空間的詳細や文脈情報だけでなく,システムの複雑さも考慮する必要がある。
画像復元の質を保証できる手法は数多くあるが, 現状技術(SOTA)手法の複雑さも増大している。
この動機付けにより、これらの競合する目標のバランスをとることができる混合階層ネットワークを提案する。
システム複雑性を軽減するためにブロック内の設計を行いながら、劣化した画像からコンテキスト情報と空間詳細を段階的に復元する。
具体的には,まずエンコーダデコーダアーキテクチャを用いて文脈情報を学習し,空間的詳細を保存する高分解能分岐と組み合わせる。
簡易な解析と比較のために、このアーキテクチャのシステムの複雑さを軽減するために、非線形活性化関数を乗法で置き換えたり取り除いたりし、単純なネットワーク構造を使う。
さらに,エンコーダデコーダの中間ブロックに対する空間畳み込みをグローバルな自己注意に置き換える。
その結果、mhnetと呼ばれる密にリンクされた階層アーキテクチャは、画像のデレイニングやデブラリングなど、いくつかの画像復元タスクにおいて強力なパフォーマンス向上をもたらす。
関連論文リスト
- A Heterogeneous Dynamic Convolutional Neural Network for Image
Super-resolution [111.97970576223622]
画像超解像(HDSRNet)における異種動的畳み込みネットワークを提案する。
下位のネットワークは対称アーキテクチャを使用して、異なるレイヤの関係を強化し、より構造的な情報をマイニングする。
実験結果から,HDSRNetは画像解決に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-24T03:44:06Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
本稿では, 複雑な画像劣化を基本劣化の観点で表現できる, という新しい概念を提案する。
We propose the Unified-Width Adaptive Dynamic Network (U-WADN) which consist of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)。
提案したU-WADNは、最大32.3%のFLOPを同時に削減し、約15.7%のリアルタイム加速を実現している。
論文 参考訳(メタデータ) (2024-01-24T04:25:12Z) - Image super-resolution via dynamic network [19.404066956727885]
画像超解像(DSRNet)のための動的ネットワークを提案する。
残余の増築ブロック、広範囲の増築ブロック、特徴の増築ブロック、建設ブロックを含む。
画像の超解像と複雑性の回復時間に関して,本手法はより競争力がある。
論文 参考訳(メタデータ) (2023-10-16T13:56:56Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
複数の画像劣化課題に対処する新しいデータ成分指向手法を提案する。
具体的には、エンコーダを用いて特徴をキャプチャし、デコーダを誘導するための劣化情報を含むプロンプトを導入する。
我々の手法は最先端技術と競争的に機能する。
論文 参考訳(メタデータ) (2023-09-06T15:05:04Z) - A Mountain-Shaped Single-Stage Network for Accurate Image Restoration [9.431709365739462]
画像復元においては、通常、空間的詳細と文脈情報の複雑なバランスを維持する必要がある。
不要な非線形活性化関数を除去または置換する,単純なU-Netアーキテクチャに基づく単一ステージ設計ベースを提案する。
我々のアプローチはM3SNetと呼ばれ、従来の最先端モデルよりも性能が優れており、計算コストの半分以下である。
論文 参考訳(メタデータ) (2023-05-09T03:18:35Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
本稿では、これらの競合する目標を最適にバランスできる新しい相乗的設計を提案する。
本提案では, 劣化した入力の復元関数を段階的に学習する多段階アーキテクチャを提案する。
MPRNetという名前の密接な相互接続型マルチステージアーキテクチャは、10のデータセットに対して強力なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2021-02-04T18:57:07Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。