論文の概要: Table Tennis Stroke Detection and Recognition Using Ball Trajectory Data
- arxiv url: http://arxiv.org/abs/2302.09657v1
- Date: Sun, 19 Feb 2023 19:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 17:13:20.877605
- Title: Table Tennis Stroke Detection and Recognition Using Ball Trajectory Data
- Title(参考訳): 球軌道データを用いたテーブルテニスストロークの検出と認識
- Authors: Kaustubh Milind Kulkarni, Rohan S Jamadagni, Jeffrey Aaron Paul,
Sucheth Shenoy
- Abstract要約: 4人のプロの卓球選手が実行した6つのストローククラスからなるデータセットを取得するために、審判の視点に配置された1台のカメラが使用されている。
従来のオブジェクト検出モデルであるYOLOv4と、時間熱マップベースのモデルであるTrackNetv2を用いたボール追跡がデータセット上に実装されている。
球軌道データを用いてストロークの時間的境界を抽出する数学的アプローチにより,2023個の有効なストロークが得られた。
時間畳み込みネットワークは87.155%の精度で全く見えないデータでストローク認識を実行した。
- 参考スコア(独自算出の注目度): 5.735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, the novel task of detecting and classifying table tennis
strokes solely using the ball trajectory has been explored. A single camera
setup positioned in the umpire's view has been employed to procure a dataset
consisting of six stroke classes executed by four professional table tennis
players. Ball tracking using YOLOv4, a traditional object detection model, and
TrackNetv2, a temporal heatmap based model, have been implemented on our
dataset and their performances have been benchmarked. A mathematical approach
developed to extract temporal boundaries of strokes using the ball trajectory
data yielded a total of 2023 valid strokes in our dataset, while also detecting
services and missed strokes successfully. The temporal convolutional network
developed performed stroke recognition on completely unseen data with an
accuracy of 87.155%. Several machine learning and deep learning based model
architectures have been trained for stroke recognition using ball trajectory
input and benchmarked based on their performances. While stroke recognition in
the field of table tennis has been extensively explored based on human action
recognition using video data focused on the player's actions, the use of ball
trajectory data for the same is an unexplored characteristic of the sport.
Hence, the motivation behind the work is to demonstrate that meaningful
inferences such as stroke detection and recognition can be drawn using minimal
input information.
- Abstract(参考訳): 本研究では,球軌道のみを用いた卓球ストロークの検出と分類を行う新しい課題について検討した。
4人のプロの卓球選手が実行した6つのストローククラスからなるデータセットの入手には、審判の視点にある1つのカメラのセットアップが用いられています。
従来のオブジェクト検出モデルであるyolov4と、時間的ヒートマップに基づくモデルであるtracknetv2を使用したボールトラッキングをデータセットに実装し、そのパフォーマンスをベンチマークしました。
球軌道データを用いてストロークの時間的境界を抽出する数学的アプローチにより,我々のデータセットでは2023個の有効なストロークが得られた。
時間畳み込みネットワークは87.155%の精度で全く見えないデータでストローク認識を実行した。
いくつかの機械学習およびディープラーニングに基づくモデルアーキテクチャは、ボール軌跡入力を用いてストローク認識のために訓練され、その性能に基づいてベンチマークされている。
卓球分野でのストローク認識は、プレイヤーのアクションに焦点を絞ったビデオデータを用いて人間の行動認識に基づいて広範囲に研究されてきたが、ボールの軌跡データの使用はスポーツの未調査の特徴である。
したがって、この研究の背景にある動機は、最小限の入力情報を用いて、ストローク検出や認識のような有意義な推論を描画できることである。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Classification of Tennis Actions Using Deep Learning [0.0]
本研究では,深層学習によるテニス行動の分類の可能性と課題について検討する。
テニスデータセットTheTISを用いて,異なる大きさの3つのモデルを訓練し,評価した。
最高のモデルは74 %の一般化精度を達成し、テニスアクション分類に優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-04T15:48:20Z) - ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton
Tactical Analysis [5.609957071296952]
我々は、アノテートされたストロークレベルの記録を持つ、公開可能な最大のバドミントンシングルスデータセットであるShuttleSetを紹介する。
104セット、3,685ラリー、36,492ストロークが2018年から2021年にかけて44試合に出場し、27人の男子シングルと女子シングルが出場した。
ShuttleSetはコンピュータ支援ラベル付けツールで手動で注釈付けされ、ショットタイプを選択する際のラベル付け効率と有効性を高める。
論文 参考訳(メタデータ) (2023-06-08T05:41:42Z) - P2ANet: A Dataset and Benchmark for Dense Action Detection from Table Tennis Match Broadcasting Videos [64.57435509822416]
この作品は、ワールド・テーブルテニス選手権とオリンピアードのプロの卓球試合の放送ビデオから収集された2,721本のビデオクリップで構成されている。
強調局所化と強調認識という2つのアクション検出問題を定式化する。
その結果、TheNameは依然として困難なタスクであり、ビデオからの高密度なアクション検出のための特別なベンチマークとして使用できることを確認した。
論文 参考訳(メタデータ) (2022-07-26T08:34:17Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Table Tennis Stroke Recognition Using Two-Dimensional Human Pose
Estimation [0.0]
本稿では,卓球映像データを集め,ストローク検出と分類を行う新しい手法を提案する。
14人のプロ卓球選手から得られた11の基本的なストロークのビデオデータを含む多様なデータセットが収集されている。
2次元ポーズ推定を用いて開発された時間畳み込みニューラルネットワークモデルは、これら11の卓球ストロークのマルチクラス分類を行う。
論文 参考訳(メタデータ) (2021-04-20T11:32:43Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
軌道抽出と予測のための新しいラベルなしアルゴリズムAutoTrajectoryを提案する。
動画中の移動物体をよりよく捉えるために,ダイナミックポイントを導入する。
ビデオ内の歩行者などの移動物体を表すインスタンスポイントに動的ポイントを集約する。
論文 参考訳(メタデータ) (2020-07-11T08:43:34Z) - Group Activity Detection from Trajectory and Video Data in Soccer [16.134402513773463]
サッカーにおけるグループアクティビティ検出は、ビデオデータまたはプレーヤとボールの軌跡データを用いて行うことができる。
現在のサッカーデータセットでは、活動は時間なしで原子イベントとしてラベル付けされる。
その結果,ほとんどの事象は,時間分解能が0.5秒未満の視力や軌跡に基づくアプローチで検出できることがわかった。
論文 参考訳(メタデータ) (2020-04-21T21:11:30Z) - TTNet: Real-time temporal and spatial video analysis of table tennis [5.156484100374058]
本稿では,高精細度卓球ビデオのリアルタイム処理を目的としたニューラルネットワークを提案する。
このアプローチは、自動参照システムによるスコア更新を推論するためのコア情報を提供する。
イベントをラベル付けした120fpsのテーブルテニスゲームのビデオ付きマルチタスクデータセットOpenTTGamesを公開している。
論文 参考訳(メタデータ) (2020-04-21T11:57:51Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
オンラインマルチオブジェクトトラッキング(MOT)フレームワークの中核的なコンポーネントの1つは、既存のトラックレットと新しい検出を関連付けることである。
そこで我々は,トラックレットが自然運動を表す可能性を直接測定することにより,トラックレットの提案を評価する確率論的自己回帰生成モデルを提案する。
論文 参考訳(メタデータ) (2020-04-16T06:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。