Continuous Time Analysis of Dynamic Matching in Heterogeneous Networks
- URL: http://arxiv.org/abs/2302.09757v1
- Date: Mon, 20 Feb 2023 04:45:13 GMT
- Title: Continuous Time Analysis of Dynamic Matching in Heterogeneous Networks
- Authors: Xiaowu Dai and Hengzhi He
- Abstract summary: We introduce a novel approach to modeling dynamic matching by establishing ordinary differential equation (ODE) models.
We study two algorithms, which prioritize the matching of compatible hard-to-match agents over easy-to-match agents in heterogeneous networks.
Our results show the trade-off between the conflicting goals of matching agents quickly and optimally, offering insights into the design of real-world dynamic matching systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of dynamic matching in heterogeneous
networks, where agents are subject to compatibility restrictions and stochastic
arrival and departure times. In particular, we consider networks with one type
of easy-to-match agents and multiple types of hard-to-match agents, each
subject to its own set of compatibility constraints. Such a setting arises in
many real-world applications, including kidney exchange programs and carpooling
platforms, where some participants may have more stringent compatibility
requirements than others. We introduce a novel approach to modeling dynamic
matching by establishing ordinary differential equation (ODE) models, offering
a new perspective for evaluating various matching algorithms. We study two
algorithms, the Greedy Algorithm and the Patient Algorithm, which prioritize
the matching of compatible hard-to-match agents over easy-to-match agents in
heterogeneous networks. Our results show the trade-off between the conflicting
goals of matching agents quickly and optimally, offering insights into the
design of real-world dynamic matching systems. We present simulations and a
real-world case study using data from the Organ Procurement and Transplantation
Network to validate theoretical predictions.
Related papers
- Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
We present AlterNAting COordination and Network-Design Algorithm (Anaconda)
Anaconda is a scalable algorithm that also enjoys near-optimality guarantees.
We demonstrate in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
arXiv Detail & Related papers (2024-09-02T18:11:33Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
We propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
We present a novel hierarchical federated learning algorithm that incorporates quantization for communication-efficiency.
We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate.
Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean.
We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach.
arXiv Detail & Related papers (2024-02-20T08:30:46Z) - Interacting Particle Systems on Networks: joint inference of the network
and the interaction kernel [8.535430501710712]
We infer the weight matrix of the network and systems which determine the rules of the interactions between agents.
We use two algorithms: one is on a new algorithm named operator regression with alternating least squares of data.
Both algorithms are scalable conditions guaranteeing identifiability and well-posedness.
arXiv Detail & Related papers (2024-02-13T12:29:38Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Semantic Correspondence with Transformers [68.37049687360705]
We propose Cost Aggregation with Transformers (CATs) to find dense correspondences between semantically similar images.
We include appearance affinity modelling to disambiguate the initial correlation maps and multi-level aggregation.
We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies.
arXiv Detail & Related papers (2021-06-04T14:39:03Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - DANR: Discrepancy-aware Network Regularization [15.239252118069762]
Network regularization is an effective tool for learning coherent models over networks.
We propose a novel approach that is robust to inadequate regularizations and effectively captures model evolution and structural changes over-temporal networks.
We develop a scalable and scalable algorithm based on the alternating method of multipliers (ADMM) to solve the proposed problem with guaranteed convergence to global optimum solutions.
arXiv Detail & Related papers (2020-05-31T02:01:19Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.