Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design
- URL: http://arxiv.org/abs/2409.01411v1
- Date: Mon, 2 Sep 2024 18:11:33 GMT
- Title: Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design
- Authors: Zirui Xu, Vasileios Tzoumas,
- Abstract summary: We present AlterNAting COordination and Network-Design Algorithm (Anaconda)
Anaconda is a scalable algorithm that also enjoys near-optimality guarantees.
We demonstrate in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
- Score: 3.5527561584422465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the first, to our knowledge, rigorous approach that enables multi-agent networks to self-configure their communication topology to balance the trade-off between scalability and optimality during multi-agent planning. We are motivated by the future of ubiquitous collaborative autonomy where numerous distributed agents will be coordinating via agent-to-agent communication to execute complex tasks such as traffic monitoring, event detection, and environmental exploration. But the explosion of information in such large-scale networks currently curtails their deployment due to impractical decision times induced by the computational and communication requirements of the existing near-optimal coordination algorithms. To overcome this challenge, we present the AlterNAting COordination and Network-Design Algorithm (Anaconda), a scalable algorithm that also enjoys near-optimality guarantees. Subject to the agents' bandwidth constraints, Anaconda enables the agents to optimize their local communication neighborhoods such that the action-coordination approximation performance of the network is maximized. Compared to the state of the art, Anaconda is an anytime self-configurable algorithm that quantifies its suboptimality guarantee for any type of network, from fully disconnected to fully centralized, and that, for sparse networks, is one order faster in terms of decision speed. To develop the algorithm, we quantify the suboptimality cost due to decentralization, i.e., due to communication-minimal distributed coordination. We also employ tools inspired by the literature on multi-armed bandits and submodular maximization subject to cardinality constraints. We demonstrate Anaconda in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
Related papers
- Communication- and Computation-Efficient Distributed Decision-Making in Multi-Robot Networks [2.8936428431504164]
We provide a distributed coordination paradigm that enables scalable and near-optimal joint motion planning among multiple robots.
Our algorithm is up to two orders faster than competitive near-optimal algorithms.
In simulations of surveillance tasks with up to 45 robots, it enables real-time planning at the order of 1 Hz with superior coverage performance.
arXiv Detail & Related papers (2024-07-15T01:25:39Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network.
Lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established.
We develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
arXiv Detail & Related papers (2024-05-28T10:28:45Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Distributed Finite-Sum Constrained Optimization subject to Nonlinearity
on the Node Dynamics [6.211043407287827]
We consider a distributed finite-sum (or fixed-sum) allocation technique to solve convex optimization problems over multi-agent networks (MANs)
This paper discusses how various nonlinearity constraints on the optimization problem can be addressed for different applications via a distributed setup (over a network)
arXiv Detail & Related papers (2022-03-28T06:47:01Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Dimension-Free Rates for Natural Policy Gradient in Multi-Agent
Reinforcement Learning [22.310861786709538]
We propose a scalable algorithm for cooperative multi-agent reinforcement learning.
We show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity.
arXiv Detail & Related papers (2021-09-23T23:38:15Z) - Competing Adaptive Networks [56.56653763124104]
We develop an algorithm for decentralized competition among teams of adaptive agents.
We present an application in the decentralized training of generative adversarial neural networks.
arXiv Detail & Related papers (2021-03-29T14:42:15Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.