Metropolis Theorem and Its Applications in Single Image Detail
Enhancement
- URL: http://arxiv.org/abs/2302.09762v1
- Date: Mon, 20 Feb 2023 05:00:20 GMT
- Title: Metropolis Theorem and Its Applications in Single Image Detail
Enhancement
- Authors: He Jiang, Mujtaba Asad, Jingjing Liu, Haoxiang Zhang, Deqiang Cheng
- Abstract summary: Our method is different, and its innovation lies in the special way to get the image detail layer.
Due to the diversity of image texture features, perfect matching is often not possible.
Our algorithm can achieve better results in quantitative metrics testing and visual effects evaluation.
- Score: 10.213517608227686
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Traditional image detail enhancement is local filter-based or global
filter-based. In both approaches, the original image is first divided into the
base layer and the detail layer, and then the enhanced image is obtained by
amplifying the detail layer. Our method is different, and its innovation lies
in the special way to get the image detail layer. The detail layer in our
method is obtained by updating the residual features, and the updating
mechanism is usually based on searching and matching similar patches. However,
due to the diversity of image texture features, perfect matching is often not
possible. In this paper, the process of searching and matching is treated as a
thermodynamic process, where the Metropolis theorem can minimize the internal
energy and get the global optimal solution of this task, that is, to find a
more suitable feature for a better detail enhancement performance. Extensive
experiments have proven that our algorithm can achieve better results in
quantitative metrics testing and visual effects evaluation. The source code can
be obtained from the link.
Related papers
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Deep Uncalibrated Photometric Stereo via Inter-Intra Image Feature
Fusion [17.686973510425172]
This paper presents a new method for deep uncalibrated photometric stereo.
It efficiently utilizes the inter-image representation to guide the normal estimation.
Our method produces significantly better results than the state-of-the-art methods on both synthetic and real data.
arXiv Detail & Related papers (2022-08-06T03:59:54Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Deep Image Compositing [93.75358242750752]
We propose a new method which can automatically generate high-quality image composites without any user input.
Inspired by Laplacian pyramid blending, a dense-connected multi-stream fusion network is proposed to effectively fuse the information from the foreground and background images.
Experiments show that the proposed method can automatically generate high-quality composites and outperforms existing methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-11-04T06:12:24Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
We study the roles of semantics and details for image matting.
We propose a novel Glance and Focus Matting network (GFM), which employs a shared encoder and two separate decoders.
Comprehensive empirical studies have demonstrated that GFM outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-30T10:57:13Z) - Region-adaptive Texture Enhancement for Detailed Person Image Synthesis [86.69934638569815]
RATE-Net is a novel framework for synthesizing person images with sharp texture details.
The proposed framework leverages an additional texture enhancing module to extract appearance information from the source image.
Experiments conducted on DeepFashion benchmark dataset have demonstrated the superiority of our framework compared with existing networks.
arXiv Detail & Related papers (2020-05-26T02:33:21Z) - Towards Analysis-friendly Face Representation with Scalable Feature and
Texture Compression [113.30411004622508]
We show that a universal and collaborative visual information representation can be achieved in a hierarchical way.
Based on the strong generative capability of deep neural networks, the gap between the base feature layer and enhancement layer is further filled with the feature level texture reconstruction.
To improve the efficiency of the proposed framework, the base layer neural network is trained in a multi-task manner.
arXiv Detail & Related papers (2020-04-21T14:32:49Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.