論文の概要: CNTS: Cooperative Network for Time Series
- arxiv url: http://arxiv.org/abs/2302.09800v1
- Date: Mon, 20 Feb 2023 06:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 16:27:02.265977
- Title: CNTS: Cooperative Network for Time Series
- Title(参考訳): CNTS:時系列協調ネットワーク
- Authors: Jinsheng Yang, Yuanhai Shao, ChunNa Li
- Abstract要約: 本稿では,協調ネットワーク時系列法(Cooperative Network Time Series approach)と呼ばれる,教師なし異常検出のための新しい手法を提案する。
CNTSの中心的な側面は多目的最適化の問題であり、協調的な解法戦略によって解決される。
実世界の3つのデータセットの実験は、CNTSの最先端性能を示し、検出器と再構成器の協調的有効性を確認する。
- 参考スコア(独自算出の注目度): 7.356583983200323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of deep learning techniques in detecting anomalies in time series
data has been an active area of research with a long history of development and
a variety of approaches. In particular, reconstruction-based unsupervised
anomaly detection methods have gained popularity due to their intuitive
assumptions and low computational requirements. However, these methods are
often susceptible to outliers and do not effectively model anomalies, leading
to suboptimal results. This paper presents a novel approach for unsupervised
anomaly detection, called the Cooperative Network Time Series (CNTS) approach.
The CNTS system consists of two components: a detector and a reconstructor. The
detector is responsible for directly detecting anomalies, while the
reconstructor provides reconstruction information to the detector and updates
its learning based on anomalous information received from the detector. The
central aspect of CNTS is a multi-objective optimization problem, which is
solved through a cooperative solution strategy. Experiments on three real-world
datasets demonstrate the state-of-the-art performance of CNTS and confirm the
cooperative effectiveness of the detector and reconstructor. The source code
for this study is publicly available on GitHub.
- Abstract(参考訳): 時系列データにおける異常検出におけるディープラーニング技術の利用は、長い開発の歴史と様々なアプローチを持つ研究の活発な領域である。
特に,リコンストラクションに基づく教師なし異常検出手法は,直観的な仮定と計算要件の低さから人気を集めている。
しかしながら、これらの手法は、しばしば外れ値に影響を受けやすく、効果的に異常をモデル化せず、最適以下の結果をもたらす。
本稿では,CNTS(Cooperative Network Time Series)アプローチと呼ばれる,教師なし異常検出のための新しい手法を提案する。
cntsシステムは検出器と再構成器の2つの構成要素で構成されている。
検出器は異常を直接検出し、再構成器は検出器に再構成情報を提供し、検出器から受信した異常情報に基づいて学習を更新する。
CNTSの中心的な側面は多目的最適化の問題であり、協調的な解法戦略によって解決される。
実世界の3つのデータセットの実験は、CNTSの最先端性能を示し、検出器と再構成器の協調的有効性を確認する。
この研究のソースコードはgithubで公開されている。
関連論文リスト
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
我々はDeepHYDRA(Deep Hybrid DBSCAN/reduction-based Anomaly Detection)を提案する。
DBSCANと学習ベースの異常検出を組み合わせる。
大規模なデータセットと複雑なデータセットの両方において、異なるタイプの異常を確実に検出できることが示されている。
論文 参考訳(メタデータ) (2024-05-13T13:47:15Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
本研究では,GAN(Generative Adversarial Neural Network)のパワーを活用した,現実の応用における異常検出のための逆方向検出手法を提案する。
従来の手法は、あらゆる種類の異常に適用できないような、クラス単位での精度のばらつきに悩まされていた。
RCALADという手法は,この構造に新たな識別器を導入し,より効率的な学習プロセスを実現することで,この問題を解決しようとするものである。
論文 参考訳(メタデータ) (2023-04-16T13:05:39Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
本稿では,時系列の非教師付き異常検出手法であるMemAAEを提案する。
2つの補完的プロキシタスク、再構築と予測を共同でトレーニングすることにより、複数のタスクによる異常検出が優れた性能を得ることを示す。
MemAAEは4つの公開データセットで総合F1スコアの0.90を達成し、最高のベースラインである0.02を上回っている。
論文 参考訳(メタデータ) (2021-10-15T18:29:05Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - CSCAD: Correlation Structure-based Collective Anomaly Detection in
Complex System [11.739889613196619]
大規模システムにおける高次元異常検出問題に対する相関構造に基づく集団異常検出モデルを提案する。
本フレームワークでは,変分オートエンコーダを組み合わせたグラフ畳み込みネットワークを用いて,特徴空間の相関とサンプルの再構成不足を共同で活用する。
異常判別ネットワークは、低異常度サンプルを正のサンプルとして、高異常度サンプルを負のサンプルとしてトレーニングすることができる。
論文 参考訳(メタデータ) (2021-05-30T09:28:25Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。