論文の概要: Attitudes and Latent Class Choice Models using Machine learning
- arxiv url: http://arxiv.org/abs/2302.09871v1
- Date: Mon, 20 Feb 2023 10:03:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 16:01:48.219824
- Title: Attitudes and Latent Class Choice Models using Machine learning
- Title(参考訳): 機械学習を用いた態度と潜在クラス選択モデル
- Authors: Lorena Torres Lahoz (1), Francisco Camara Pereira (1), Georges Sfeir
(1), Ioanna Arkoudi (1), Mayara Moraes Monteiro (1), Carlos Lima Azevedo (1)
((1) DTU Management, Technical University of Denmark)
- Abstract要約: LCCM (Latent Class Choice Models) の仕様において, 位置インジケータを効率的に組み込む手法を提案する。
この定式化は、位置指標と決定選択との関係を探索する能力において構造方程式を克服する。
我々は,デンマークのコペンハーゲンから,カーシェアリング(Car-Sharing, CS)サービスサブスクリプションの選択を推定するためのフレームワークをテストした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent Class Choice Models (LCCM) are extensions of discrete choice models
(DCMs) that capture unobserved heterogeneity in the choice process by
segmenting the population based on the assumption of preference similarities.
We present a method of efficiently incorporating attitudinal indicators in the
specification of LCCM, by introducing Artificial Neural Networks (ANN) to
formulate latent variables constructs. This formulation overcomes structural
equations in its capability of exploring the relationship between the
attitudinal indicators and the decision choice, given the Machine Learning (ML)
flexibility and power in capturing unobserved and complex behavioural features,
such as attitudes and beliefs. All of this while still maintaining the
consistency of the theoretical assumptions presented in the Generalized Random
Utility model and the interpretability of the estimated parameters. We test our
proposed framework for estimating a Car-Sharing (CS) service subscription
choice with stated preference data from Copenhagen, Denmark. The results show
that our proposed approach provides a complete and realistic segmentation,
which helps design better policies.
- Abstract(参考訳): LCCM(Latent Class Choice Models)は、選好類似性の仮定に基づいて集団を分割することにより、選択過程における観測されない不均一性を捉える離散選択モデル(DCM)の拡張である。
本稿では,潜伏変数の構成を定式化するために人工ニューラルネットワーク(ANN)を導入し,LCCMの仕様に位置インジケータを効率的に組み込む手法を提案する。
この定式化は、態度や信念のような観察不能で複雑な行動的特徴を捉える機械学習(ml)の柔軟性とパワーを考慮に入れることで、位置指標と決定選択との関係を探求する能力において、構造方程式を克服する。
これら全ては、一般化ランダムユーティリティモデルで提示される理論的仮定と推定パラメータの解釈可能性の整合性を維持しながら維持される。
提案するカーシェアリング(cs)サービスのサブスクリプション選択のためのフレームワークをデンマークのコペンハーゲンで提案する選好データを用いてテストした。
その結果,提案手法は完全かつ現実的なセグメンテーションを提供し,より優れたポリシー設計を支援することを示す。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
本稿では,DCMにおけるデータ駆動型アプローチの可能性を拡張するフレームワークを提案する。
これには、必要な関係を表す擬似データサンプルと、その実現度を測定する損失関数が含まれる。
ケーススタディは、このフレームワークの個別選択分析の可能性を示している。
論文 参考訳(メタデータ) (2023-05-30T12:53:55Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Inference-InfoGAN: Inference Independence via Embedding Orthogonal Basis
Expansion [2.198430261120653]
解離学習は、生成モデルが一般的な戦略である独立かつ解釈可能な潜在変数を構築することを目的としている。
本稿では,直交基底拡張(OBE)をInfoGANネットワークに組み込むことで,新しいGANベースの非絡み合いフレームワークを提案する。
我々の推論情報GANは、モデル微調整なしで、FactVAE、分離されたferenceAttribute Predictability(SAP)、Mutual Information Gap(MIG)、およびVP(VP)の指標で高い歪みスコアを得る。
論文 参考訳(メタデータ) (2021-10-02T11:54:23Z) - Combining Discrete Choice Models and Neural Networks through Embeddings:
Formulation, Interpretability and Performance [10.57079240576682]
本研究では、ニューラルネットワーク(ANN)を用いた理論とデータ駆動選択モデルを組み合わせた新しいアプローチを提案する。
特に、分類的または離散的説明変数を符号化するために、埋め込みと呼ばれる連続ベクトル表現を用いる。
我々のモデルは最先端の予測性能を提供し、既存のANNモデルよりも優れ、必要なネットワークパラメータの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-09-24T15:55:31Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
離散選択モデル(DCM)における確率的機械学習の非パラメトリッククラスを提案する。
提案モデルでは,GPを用いた行動同質クラスタ(ラテントクラス)に確率的に個人を割り当てる。
モデルは2つの異なるモード選択アプリケーションでテストされ、異なるLCCMベンチマークと比較される。
論文 参考訳(メタデータ) (2021-01-28T19:56:42Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。