論文の概要: A Survey on Semi-Supervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2302.09899v1
- Date: Mon, 20 Feb 2023 10:54:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 15:52:49.049716
- Title: A Survey on Semi-Supervised Semantic Segmentation
- Title(参考訳): 半監督セマンティックセグメンテーションに関する調査
- Authors: Adrian Pel\'aez-Vegas, Pablo Mesejo and Juli\'an Luengo
- Abstract要約: 本研究では,半教師付きセマンティックセグメンテーションにおける技術の現状について概説する。
それは、文献の中で最も広く使われているベクンマークデータセットの分類学のすべてのカテゴリを表す様々なモデルの実験を含む。
- 参考スコア(独自算出の注目度): 3.5450828190071655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is one of the most challenging tasks in computer
vision. However, in many applications, a frequent obstacle is the lack of
labeled images, due to the high cost of pixel-level labeling. In this scenario,
it makes sense to approach the problem from a semi-supervised point of view,
where both labeled and unlabeled images are exploited. In recent years this
line of research has gained much interest and many approaches have been
published in this direction. Therefore, the main objective of this study is to
provide an overview of the current state of the art in semi-supervised semantic
segmentation, offering an updated taxonomy of all existing methods to date.
This is complemented by an experimentation with a variety of models
representing all the categories of the taxonomy on the most widely used
becnhmark datasets in the literature, and a final discussion on the results
obtained, the challenges and the most promising lines of future research.
- Abstract(参考訳): セマンティックセグメンテーションはコンピュータビジョンにおいて最も困難なタスクの1つである。
しかし、多くのアプリケーションでは、高コストのピクセルレベルのラベリングのため、ラベル付き画像の欠如が頻繁に発生する。
このシナリオでは、ラベル付き画像とラベルなし画像の両方が利用される半教師付き視点からこの問題にアプローチすることは理にかなっている。
近年、この研究の行方が注目され、この方向に多くのアプローチが公表されている。
そこで本研究の目的は, 半教師付き意味セグメンテーションにおける技術の現状を概観することであり, 既存の手法の最新の分類法を提供することである。
これは、文献の中で最も広く使われているベクンマークデータセットの分類のすべてのカテゴリを表す様々なモデルによる実験と、得られた結果、課題、そして将来の研究の最も有望なラインに関する最終的な議論によって補完される。
関連論文リスト
- Image Segmentation in Foundation Model Era: A Survey [99.19456390358211]
イメージセグメンテーションにおける現在の研究は、これらの進歩に関連する特徴、課題、解決策の詳細な分析を欠いている。
本調査は、FM駆動画像セグメンテーションを中心とした最先端の研究を徹底的にレビューすることで、このギャップを埋めようとしている。
現在の研究成果の広さを包括する,300以上のセグメンテーションアプローチの概要を概観する。
論文 参考訳(メタデータ) (2024-08-23T10:07:59Z) - Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
本総説は, 半教師付きセマンティックセグメンテーション分野における擬似ラベル手法に関する最新の研究成果について, 包括的かつ組織的に概観することを目的としている。
さらに,医用およびリモートセンシング画像のセグメンテーションにおける擬似ラベル技術の適用について検討する。
論文 参考訳(メタデータ) (2024-03-04T10:18:38Z) - Weakly-Supervised Semantic Segmentation with Image-Level Labels: from
Traditional Models to Foundation Models [33.690846523358836]
弱教師付きセマンティックセマンティックセグメンテーション(WSSS)はピクセルレベルのラベルを避ける効果的なソリューションである。
私たちは、WSSSの最も難しい形態であるイメージレベルのラベルによるWSSSに焦点を当てています。
本稿では,WSSS の文脈において,Segment Anything Model (SAM) などの視覚基盤モデルの適用性について検討する。
論文 参考訳(メタデータ) (2023-10-19T07:16:54Z) - Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [5.0243930429558885]
Few-Shot Semanticはコンピュータビジョンの新しいタスクであり、いくつかの例で新しいセマンティッククラスをセグメンテーションできるモデルを設計することを目的としている。
本稿では、Few-Shot Semanticの総合的な調査からなり、その進化を辿り、様々なモデル設計を探求する。
論文 参考訳(メタデータ) (2023-04-12T13:07:37Z) - Semantic Image Segmentation: Two Decades of Research [22.533249554532322]
本書はセマンティックイメージセグメンテーション(SiS)分野における20年間の研究成果をまとめたものである。
本稿では,近年のトランスフォーマーの利用動向を含む,最近のディープラーニング手法の概要を紹介する。
我々は、マルチドメイン学習、ドメイン一般化、ドメインインクリメンタル学習、テスト時間適応、ソースフリードメイン適応といった新しいトレンドを明らかにした。
論文 参考訳(メタデータ) (2023-02-13T14:11:05Z) - A Survey on Label-efficient Deep Segmentation: Bridging the Gap between
Weak Supervision and Dense Prediction [115.9169213834476]
本稿では,ラベル効率の高いセグメンテーション手法について概説する。
まず,様々な種類の弱いラベルによって提供される監督に従って,これらの手法を整理する分類法を開発する。
次に,既存のラベル効率のセグメンテーション手法を統一的な視点から要約する。
論文 参考訳(メタデータ) (2022-07-04T06:21:01Z) - Unsupervised Domain Adaptation for Semantic Image Segmentation: a
Comprehensive Survey [24.622211579286127]
この調査は、この信じられないほど急速に成長している分野の5年間をまとめたものです。
最も重要なセマンティックセグメンテーション手法を提案する。
マルチドメイン学習、ドメイン一般化、テスト時間適応、ソースフリードメイン適応といった新しいトレンドを紹介します。
論文 参考訳(メタデータ) (2021-12-06T18:47:41Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Deep Learning for Scene Classification: A Survey [48.57123373347695]
シーン分類は、コンピュータビジョンにおける長年の、根本的かつ挑戦的な問題である。
大規模データセットの出現と深層学習技術のルネッサンスは、シーン表現と分類の分野において顕著な進歩をもたらした。
本稿では,深層学習によるシーン分類における最近の成果を総合的に調査する。
論文 参考訳(メタデータ) (2021-01-26T03:06:50Z) - Extending and Analyzing Self-Supervised Learning Across Domains [50.13326427158233]
近年,自己指導型表現学習が目覚ましい成果を上げている。
実験は主にImageNetや他の同様の大規模なインターネット画像データセット上で行われる。
我々は、前例のない様々なドメインで、いくつかのポピュラーな手法を実験した。
論文 参考訳(メタデータ) (2020-04-24T21:18:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。