論文の概要: Boosting classification reliability of NLP transformer models in the
long run
- arxiv url: http://arxiv.org/abs/2302.10016v1
- Date: Mon, 20 Feb 2023 14:46:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 15:05:40.782471
- Title: Boosting classification reliability of NLP transformer models in the
long run
- Title(参考訳): 長期運転におけるnlp変圧器モデルの分類信頼性向上
- Authors: Zolt\'an Kmetty, Bence Koll\'anyi and Kriszti\'an Boros
- Abstract要約: 本稿では,長期にわたる分類課題に対して,BERTモデルを微調整するための異なるアプローチを比較する。
当社のコーパスには、2020年9月から2021年12月までのハンガリーでの新型コロナウイルスワクチン接種に関するコメントが800万件以上含まれています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformer-based machine learning models have become an essential tool for
many natural language processing (NLP) tasks since the introduction of the
method. A common objective of these projects is to classify text data.
Classification models are often extended to a different topic and/or time
period. In these situations, deciding how long a classification is suitable for
and when it is worth re-training our model is difficult. This paper compares
different approaches to fine-tune a BERT model for a long-running
classification task. We use data from different periods to fine-tune our
original BERT model, and we also measure how a second round of annotation could
boost the classification quality. Our corpus contains over 8 million comments
on COVID-19 vaccination in Hungary posted between September 2020 and December
2021. Our results show that the best solution is using all available unlabeled
comments to fine-tune a model. It is not advisable to focus only on comments
containing words that our model has not encountered before; a more efficient
solution is randomly sample comments from the new period. Fine-tuning does not
prevent the model from losing performance but merely slows it down. In a
rapidly changing linguistic environment, it is not possible to maintain model
performance without regularly annotating new text.
- Abstract(参考訳): トランスフォーマーベースの機械学習モデルは,この手法の導入以来,多くの自然言語処理(NLP)タスクに不可欠なツールとなっている。
これらのプロジェクトの一般的な目的は、テキストデータの分類である。
分類モデルは、しばしば異なるトピックや時間に拡張される。
このような状況では、分類が適切か、いつ再トレーニングする価値があるかを決定するのは難しい。
本稿では,長期にわたる分類課題に対して,BERTモデルを微調整する方法を比較する。
我々は、異なる期間のデータを使用して、元のBERTモデルを微調整し、また、第2ラウンドのアノテーションが分類品質をいかに向上させるかを測定する。
当社のコーパスには、2020年9月から2021年12月までのハンガリーでの新型コロナウイルスワクチン接種に関するコメントが800万件以上含まれています。
我々の結果によると、最良の解決策は、利用可能なすべてのコメントを使ってモデルを微調整することである。
より効率的な解決策は、新しい期間のランダムなサンプルコメントである。
微調整はモデルのパフォーマンスを損なうことを妨げないが、単に速度を落とすだけである。
急速に変化する言語環境では、定期的に新しいテキストに注釈を付けずにモデルのパフォーマンスを維持することはできない。
関連論文リスト
- Generative Multi-modal Models are Good Class-Incremental Learners [51.5648732517187]
クラス増分学習のための新しい生成型マルチモーダルモデル(GMM)フレームワークを提案する。
提案手法は適応生成モデルを用いて画像のラベルを直接生成する。
Few-shot CIL設定では、現在の最先端のすべてのメソッドに対して少なくとも14%精度が向上し、忘れてはならない。
論文 参考訳(メタデータ) (2024-03-27T09:21:07Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Models of reference production: How do they withstand the test of time? [6.651864489482537]
本研究では,文脈の参照表現を生成するタスクをケーススタディとして使用し,GRECから分析を開始する。
より現実的なデータセットでモデルを評価すれば、モデルのパフォーマンスはどうなるのか、私たちは尋ねます。
我々は、GRECは、人間の参照生産を模倣するモデルの能力に対する信頼性の高い評価を提供するものではないと結論付けている。
論文 参考訳(メタデータ) (2023-07-27T12:46:38Z) - On Robustness of Finetuned Transformer-based NLP Models [11.063628128069736]
CKAとSTIRの2つの指標を用いて、事前訓練された言語モデルと微調整された言語モデル間の変化を特徴付ける。
GPT-2表現はBERTやT5よりも複数の入力摂動に対して堅牢である。
この研究は、人気のあるTransformerベースのモデルの摂動固有の弱点に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-23T18:25:18Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
比較的少ないパラメータとトレーニングステップを持つ言語モデルは、最近の大規模なデータセットでそれを上回るパフォーマンスを得ることができる。
二項選択タスクにおける常識推論のための絶対的最先端結果を生成する。
より小さなモデルの堅牢性は、構成性の観点から理解されるべきである。
論文 参考訳(メタデータ) (2022-01-23T22:00:54Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
ディープラーニングでは、アクティブな学習は通常、微調整によって連続した深層モデルを更新する反復的なプロセスとして実装される。
移行学習にインスパイアされたアプローチを用いてこの問題に対処する。
本稿では,ALプロセスの反復性を利用してより堅牢なサンプルを抽出する新しい取得関数を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:53:10Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
ラベル付きデータにはタスク関連情報が豊富に含まれており、言語モデルの素早い学習に有用であることが証明されている。
本研究では,言語モデルファインチューニングのための自己学習手法を再検討し,最先端のプロンプトベースの少ショット学習者,SFLMを提案する。
論文 参考訳(メタデータ) (2021-10-04T08:51:36Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Cold-start Active Learning through Self-supervised Language Modeling [15.551710499866239]
アクティブラーニングは、ラベルに最も重要な例を選択することで、アノテーションのコストを削減することを目的としている。
BERTでは、マスク付き言語モデリング損失に基づく単純な戦略を開発する。
他のベースラインと比較して,本手法はより少ないサンプリングイテレーションと時間で精度が高い。
論文 参考訳(メタデータ) (2020-10-19T14:09:17Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。