(Nonequilibrium) dynamics of diffusion processes with non-conservative
drifts
- URL: http://arxiv.org/abs/2302.10154v5
- Date: Thu, 15 Feb 2024 08:00:49 GMT
- Title: (Nonequilibrium) dynamics of diffusion processes with non-conservative
drifts
- Authors: P. Garbaczewski, M. \.Zaba
- Abstract summary: The nonequilibrium Fokker-Planck dynamics with a non-conservative drift field, in dimension $Ngeq 2$, can be related with the non-Hermitian quantum mechanics in a real scalar potential $V$ and in a purely imaginary vector potential -$iA$ of real amplitude $A$.
Since Fokker-Planck probability density functions may be obtained by means of Feynman's path integrals, the previous observation points towards a general issue of "magnetically affine" propagators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nonequilibrium Fokker-Planck dynamics with a non-conservative drift
field, in dimension $N\geq 2$, can be related with the non-Hermitian quantum
mechanics in a real scalar potential $V$ and in a purely imaginary vector
potential -$iA$ of real amplitude $A$. Since Fokker-Planck probability density
functions may be obtained by means of Feynman's path integrals, the previous
observation points towards a general issue of "magnetically affine"
propagators, possibly of quantum origin, in real and Euclidean time. In below
we shall follow the $N=3$ "magnetic thread", within which one may keep under a
computational control formally and conceptually different implementations of
magnetism (or surrogate magnetism) in the dynamics of diffusion processes. We
shall focus on interrelations (with due precaution to varied, not evidently
compatible, notational conventions) of: (i) the pertinent non-conservatively
drifted diffusions, (ii) the classic Brownian motion of charged particles in
the (electro)magnetic field, (iii) diffusion processes arising within so-called
Euclidean quantum mechanics (which from the outset employs non-Hermitian
"magnetic" Hamiltonians), (iv) limitations of the usefulness of the Euclidean
map $\exp(-itH_{quant}) \rightarrow \exp(-tH_{Eucl})$, regarding the
probabilistic significance of inferred (path) integral kernels in the
description of diffusion processes.
Related papers
- Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Non-Hermitian Fermi-Dirac Distribution in Persistent Current Transport [0.0]
Persistent currents circulate continuously without requiring external power sources.
We introduce a non-Hermitian Fermi-Dirac distribution and derive an analytical expression for the persistent current that relies solely on the complex spectrum.
We show that the persistent currents in both systems exhibit no anomalies at any emergent exceptional points, whose signatures are only discernible in the current susceptibility.
arXiv Detail & Related papers (2024-03-14T17:00:00Z) - Spin dynamics and dark particle in a weak-coupled quantum Ising ladder
with $\mathcal{D}_8^{(1)}$ spectrum [7.16653440475268]
Emergent Ising$_h2$ integrability is anticipated in a quantum Ising ladder composed of two weakly coupled, critical transverse field Ising chains.
We show that the selection rule to the form factor, which is inherent in the intrinsic charge-parity $mathcalC$ of the Ising$_h2$ particles, causes a significant result.
The long lifetime of dark particle suggests its potential as a stable qubit for advancing quantum information technology.
arXiv Detail & Related papers (2024-02-17T09:12:59Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Distinct universality classes of diffusive transport from full counting
statistics [0.4014524824655105]
We study the full counting statistics of spin transport in various integrable and non-integrable anisotropic one-dimensional spin models.
We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian universality class.
Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.
arXiv Detail & Related papers (2022-03-17T18:00:01Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Three Faces of the Aharonov-Bohm Phase [0.0]
The Aharonov-Bohm (AB) phase that makes its entry in the above bizarre effect is also deployed to derive the observed magnetic flux quantisation in superconductors.
The Dirac result implies that the existence of a single magnetic monopole anywhere in the universe would entail quantisation of the product of a particle's electric charge and the monopole's magnetic charge.
arXiv Detail & Related papers (2020-10-21T13:34:38Z) - Super-exponential diffusion in nonlinear non-Hermitian systems [2.8572548342403024]
We investigate the quantum diffusion of a periodically kicked particle subjecting to both nonlinearity induced self-interactions and $mathcalPT$-symmetric potentials.
In the $mathcalPT$-symmetry-breaking phase, the intensity of a state increases exponentially with time, leading to the exponential growth of the interaction strength.
The feedback of the intensity-dependent nonlinearity further turns the interaction energy into the kinetic energy, resulting in a super-exponential growth of the mean energy.
arXiv Detail & Related papers (2020-10-05T13:04:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.