Spin dynamics and dark particle in a weak-coupled quantum Ising ladder
with $\mathcal{D}_8^{(1)}$ spectrum
- URL: http://arxiv.org/abs/2402.11229v1
- Date: Sat, 17 Feb 2024 09:12:59 GMT
- Title: Spin dynamics and dark particle in a weak-coupled quantum Ising ladder
with $\mathcal{D}_8^{(1)}$ spectrum
- Authors: Yunjing Gao, Xiao Wang, Ning Xi, Yunfeng Jiang, Rong Yu, and Jianda Wu
- Abstract summary: Emergent Ising$_h2$ integrability is anticipated in a quantum Ising ladder composed of two weakly coupled, critical transverse field Ising chains.
We show that the selection rule to the form factor, which is inherent in the intrinsic charge-parity $mathcalC$ of the Ising$_h2$ particles, causes a significant result.
The long lifetime of dark particle suggests its potential as a stable qubit for advancing quantum information technology.
- Score: 7.16653440475268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergent Ising$_h^2$ integrability is anticipated in a quantum Ising ladder
composed of two weakly coupled, critical transverse field Ising chains. This
integrable system is remarkable for including eight types of massive
relativistic particles, with their scattering matrix and spectrum characterized
by the $\mathcal{D}_8^{(1)}$ Lie algebra. In this article we delve into the
zero-temperature spin dynamics of this integrable quantum Ising ladder. By
computing the dynamical structure factors from analytical form factor approach,
we clearly identify dispersive single-particle excitations of (anti-) soliton
and breathers as well as their multi-particle continua in the spin dynamical
spectrum. We show that the selection rule to the form factor, which is inherent
in the intrinsic charge-parity $\mathcal{C}$ of the Ising$_h^2$ particles as
well as the local spin operators, causes a significant result that
$\mathcal{C}$-odd particles, termed as dark particles, cannot be directly
excited from the ground state through any local or quasi-local operations.
Furthermore, the lightest dark particle is proposed to be generated and
controlled through resonant absorption-resonant emission processes. The long
lifetime of dark particle suggests its potential as a stable qubit for
advancing quantum information technology.
Related papers
- Non-local quench spectroscopy of fermionic excitations in 1D quantum spin chains [0.0]
We show theoretically that emphquench spectroscopy can reconstruct accurately the dispersion relation of fermionic quasiparticles in spin chains.
Our analysis is based on new exact results for the quench dynamics of quantum spin chains.
arXiv Detail & Related papers (2024-07-20T08:24:01Z) - Thermal activated detection of dark particles in a weakly coupled quantum Ising ladder [6.125862884670682]
The Ising$_h2$ integrable field theory possesses eight types of relativistic particles.
It is predicted that all odd-parity particles are dark and cannot be directly excited from the ground state.
We find that the lightest dark particle is detectable, manifested as a thermal activation gap in nuclear magnetic resonance measurements.
arXiv Detail & Related papers (2024-06-21T09:58:23Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Open Quantum Systems with Kadanoff-Baym Equations [0.0]
We study quantum mechanical fermionic particles exhibiting one bound state within a one-dimensional attractive square-well potential in a heat bath of bosonic particles.
For this open quantum system we formulate the non-equilibrium Kadanoff-Baym equations for the system particles.
The corresponding spatially imhomogeneous integro-differential equations for the one-particle Greens's function are solved numerically.
arXiv Detail & Related papers (2023-08-15T09:19:21Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - (Nonequilibrium) dynamics of diffusion processes with non-conservative
drifts [0.0]
The nonequilibrium Fokker-Planck dynamics with a non-conservative drift field, in dimension $Ngeq 2$, can be related with the non-Hermitian quantum mechanics in a real scalar potential $V$ and in a purely imaginary vector potential -$iA$ of real amplitude $A$.
Since Fokker-Planck probability density functions may be obtained by means of Feynman's path integrals, the previous observation points towards a general issue of "magnetically affine" propagators.
arXiv Detail & Related papers (2023-02-20T18:39:15Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Solvable model of a generic driven mixture of trapped Bose-Einstein
condensates and properties of a many-boson Floquet state at the limit of an
infinite number of particles [0.0]
A solvable model of a periodically-driven mixture of Bose-Einstein condensates is presented.
The model generalizes the harmonic-interaction model for the time-dependent domain.
We investigate the imprinting of momentum and its fluctuations when steering a Bose-Einstein condensate by an interacting bosonic impurity.
arXiv Detail & Related papers (2020-10-29T15:01:59Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.