Semantic Segmentation of Urban Textured Meshes Through Point Sampling
- URL: http://arxiv.org/abs/2302.10635v1
- Date: Tue, 21 Feb 2023 12:49:31 GMT
- Title: Semantic Segmentation of Urban Textured Meshes Through Point Sampling
- Authors: Gr\'egoire Grzeczkowicz (1 and 2), Bruno Vallet (1) ((1) LASTIG, Univ
Gustave Eiffel, IGN, ENSG, (2) Direction G\'en\'erale de l'Armement)
- Abstract summary: We study the influence of different parameters such as the sampling method, the density of the extracted cloud, the features selected and the number of points used at each training period.
Our result outperforms the state-of-the-art on the SUM dataset, earning about 4 points in OA and 18 points in mIoU.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Textured meshes are becoming an increasingly popular representation combining
the 3D geometry and radiometry of real scenes. However, semantic segmentation
algorithms for urban mesh have been little investigated and do not exploit all
radiometric information. To address this problem, we adopt an approach
consisting in sampling a point cloud from the textured mesh, then using a point
cloud semantic segmentation algorithm on this cloud, and finally using the
obtained semantic to segment the initial mesh. In this paper, we study the
influence of different parameters such as the sampling method, the density of
the extracted cloud, the features selected (color, normal, elevation) as well
as the number of points used at each training period. Our result outperforms
the state-of-the-art on the SUM dataset, earning about 4 points in OA and 18
points in mIoU.
Related papers
- Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
Point cloud upsampling aims to generate dense and uniformly distributed point sets from a sparse point cloud.
Previous methods typically split a sparse point cloud into several local patches, upsample patch points, and merge all upsampled patches.
We propose a novel approach that learns an unsigned distance field guided by local priors for point cloud upsampling.
arXiv Detail & Related papers (2023-12-23T01:52:14Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Point-Unet: A Context-aware Point-based Neural Network for Volumetric
Segmentation [18.81644604997336]
We propose Point-Unet, a novel method that incorporates the efficiency of deep learning with 3D point clouds into volumetric segmentation.
Our key idea is to first predict the regions of interest in the volume by learning an attentional probability map.
A comprehensive benchmark on different metrics has shown that our context-aware Point-Unet robustly outperforms the SOTA voxel-based networks.
arXiv Detail & Related papers (2022-03-16T22:02:08Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
We introduce a new outdoor urban 3D pointcloud dataset, covering a total area of 2.7 $km2$, sampled from three Swiss cities.
The dataset is manually annotated for semantic segmentation with per-point labels, and is built using photogrammetry from images acquired by multirotors equipped with high-resolution cameras.
arXiv Detail & Related papers (2020-12-23T21:48:47Z) - Semantic Segmentation of Surface from Lidar Point Cloud [15.882128188732016]
The Lidar sensor can produce near accurate 3D map of the environment in the format of point cloud, in real time.
The data is adequate for extracting information related to SLAM, but processing millions of points in the point cloud is computationally quite expensive.
The methodology presented proposes a fast algorithm that can be used to extract semantically labelled surface segments from the cloud, in real time.
arXiv Detail & Related papers (2020-09-13T13:06:26Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z) - Learning Gradient Fields for Shape Generation [69.85355757242075]
A point cloud can be viewed as samples from a distribution of 3D points whose density is concentrated near the surface of the shape.
We generate point clouds by performing gradient ascent on an unnormalized probability density.
Our model directly predicts the gradient of the log density field and can be trained with a simple objective adapted from score-based generative models.
arXiv Detail & Related papers (2020-08-14T18:06:15Z) - Point Set Voting for Partial Point Cloud Analysis [26.31029112502835]
techniques for point cloud classification and segmentation have in recent years achieved incredible performance driven in part by leveraging large synthetic datasets.
This paper proposes a general model for partial point clouds analysis wherein the latent feature encoding a complete point clouds is inferred by applying a local point set voting strategy.
arXiv Detail & Related papers (2020-07-09T03:37:31Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
We present an algorithm that operates on 3D-point clouds and estimates the underlying DTM for the scene using an end-to-end approach.
Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features.
arXiv Detail & Related papers (2020-05-21T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.