論文の概要: DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data
- arxiv url: http://arxiv.org/abs/2302.10753v3
- Date: Mon, 29 Apr 2024 06:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 01:44:16.340386
- Title: DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data
- Title(参考訳): DTAAD:多変量時系列データにおける異常検出のためのデュアルTcnアテンションネットワーク
- Authors: Lingrui Yu,
- Abstract要約: 本稿では,Transformer と Dual Temporal Convolutional Network (TCN) に基づく異常検出・診断モデル DTAAD を提案する。
予測精度の向上と相関性の向上のために,スケーリング手法とフィードバック機構を導入している。
7つの公開データセットに対する実験により、DTAADは検出および診断性能の両面で現在最先端のベースライン法の大部分を超えていることが確認された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection techniques enable effective anomaly detection and diagnosis in multi-variate time series data, which are of major significance for today's industrial applications. However, establishing an anomaly detection system that can be rapidly and accurately located is a challenging problem due to the lack of anomaly labels, the high dimensional complexity of the data, memory bottlenecks in actual hardware, and the need for fast reasoning. In this paper, we propose an anomaly detection and diagnosis model, DTAAD, based on Transformer and Dual Temporal Convolutional Network (TCN). Our overall model is an integrated design in which an autoregressive model (AR) combines with an autoencoder (AE) structure. Scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences. Constructed by us, the Dual TCN-Attention Network (DTA) uses only a single layer of Transformer encoder in our baseline experiment, belonging to an ultra-lightweight model. Our extensive experiments on seven public datasets validate that DTAAD exceeds the majority of currently advanced baseline methods in both detection and diagnostic performance. Specifically, DTAAD improved F1 scores by $8.38\%$ and reduced training time by $99\%$ compared to the baseline. The code and training scripts are publicly available on GitHub at https://github.com/Yu-Lingrui/DTAAD.
- Abstract(参考訳): 異常検出技術は、今日の産業用途において重要な多変量時系列データにおいて、効果的な異常検出と診断を可能にする。
しかし, 異常ラベルの欠如, データの高次元複雑さ, 実際のハードウェアにおけるメモリボトルネック, 高速推論の必要性, などにより, 迅速かつ正確に検出できる異常検出システムの構築は困難である。
本稿では,Transformer と Dual Temporal Convolutional Network (TCN) に基づく異常検出・診断モデル DTAAD を提案する。
我々の全体モデルは、自己回帰モデル(AR)がオートエンコーダ(AE)構造と結合する統合設計である。
スケーリング手法とフィードバック機構を導入し、予測精度を改善し、相関差を拡大する。
我々の構築したDual TCN-Attention Network (DTA)は,超軽量モデルに属するトランスフォーマーエンコーダの単一層のみを用いている。
7つの公開データセットに関する広範な実験により、DTAADは検出および診断性能の両面で現在最先端のベースライン手法の大部分を超えていることが確認された。
具体的には、DTAADはF1スコアを8.38 %$に改善し、トレーニング時間をベースラインと比較して99 %$に短縮した。
コードとトレーニングスクリプトはGitHubでhttps://github.com/Yu-Lingrui/DTAADで公開されている。
関連論文リスト
- Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
多次元時系列異常検出技術は、航空宇宙、水処理、クラウドサービスプロバイダなど、多くの分野において重要な役割を果たす。
高次元および複雑なデータセットにおいて、効果的かつ正確な異常検出を行うことがますます困難になっている。
本稿では,複数変数間の高次マルチホップ相関を明示的に捉えるハイパーグラフに基づく時間グラフ畳み込みネットワークモデルSTGCN_Hyperを提案する。
我々のモデルはデータ中のマルチスケール時系列の特徴と特徴間の依存関係を柔軟に学習し、異常検出の精度、リコール、F1スコアで既存のベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-10-29T17:19:18Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
本稿では,音環境における故障診断性能を向上させるため,TDANet(Tunal Denoise Convolutional Neural Network With Attention)を提案する。
TDANetモデルは、その周期特性に基づいて1次元信号を2次元テンソルに変換し、マルチスケールの2次元畳み込みカーネルを用いて周期内および周期間の信号情報を抽出する。
CWRU (single sensor) とReal Aircraft Sensor Fault (multiple sensor) の2つのデータセットに対する評価は、TDANetモデルがノイズの多い環境下での診断精度において既存のディープラーニングアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-03-29T02:54:41Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranADはディープトランスネットワークに基づく異常検出および診断モデルである。
注意に基づくシーケンスエンコーダを使用して、データ内のより広い時間的傾向の知識を迅速に推論する。
TranADは、データと時間効率のトレーニングによる検出と診断のパフォーマンスにおいて、最先端のベースラインメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-18T19:41:29Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。