論文の概要: Interpreting wealth distribution via poverty map inference using
multimodal data
- arxiv url: http://arxiv.org/abs/2302.10793v1
- Date: Fri, 17 Feb 2023 11:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 14:25:33.206465
- Title: Interpreting wealth distribution via poverty map inference using
multimodal data
- Title(参考訳): マルチモーダルデータを用いた貧困マップ推論による富分布の解釈
- Authors: Lisette Esp\'in-Noboa, J\'anos Kert\'esz, and M\'arton Karsai
- Abstract要約: 本稿では,複数の人口にまたがる富の平均および標準偏差を推論する機械学習モデルのパイプラインを提案する。
これらのモデルは、衛星画像と、オンラインのクラウドソーシングとソーシャルメディアを通じて収集されたメタデータに基づいて、7つの独立した、自由に利用可能な機能ソースを利用する。
その結果, 富の局所的平均と変動が回復し, 正の非単調な相関関係を正しく捉えた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Poverty maps are essential tools for governments and NGOs to track
socioeconomic changes and adequately allocate infrastructure and services in
places in need. Sensor and online crowd-sourced data combined with machine
learning methods have provided a recent breakthrough in poverty map inference.
However, these methods do not capture local wealth fluctuations, and are not
optimized to produce accountable results that guarantee accurate predictions to
all sub-populations. Here, we propose a pipeline of machine learning models to
infer the mean and standard deviation of wealth across multiple geographically
clustered populated places, and illustrate their performance in Sierra Leone
and Uganda. These models leverage seven independent and freely available
feature sources based on satellite images, and metadata collected via online
crowd-sourcing and social media. Our models show that combined metadata
features are the best predictors of wealth in rural areas, outperforming
image-based models, which are the best for predicting the highest wealth
quintiles. Our results recover the local mean and variation of wealth, and
correctly capture the positive yet non-monotonous correlation between them. We
further demonstrate the capabilities and limitations of model transfer across
countries and the effects of data recency and other biases. Our methodology
provides open tools to build towards more transparent and interpretable models
to help governments and NGOs to make informed decisions based on data
availability, urbanization level, and poverty thresholds.
- Abstract(参考訳): 貧困マップは、政府やNGOが社会経済の変化を追跡し、必要な場所でインフラやサービスを適切に割り当てるために必要なツールである。
センサとオンラインクラウドソースのデータと機械学習の手法が組み合わさって、貧困マップ推論のブレークスルーとなった。
しかし、これらの手法は地域の富の変動を捉えておらず、全てのサブ人口に対する正確な予測を保証する説明可能な結果を生み出すように最適化されていない。
本稿では,複数の地理的に分布する地域における富の平均および標準偏差を推定する機械学習モデルのパイプラインを提案し,シエラレオネとウガンダでの性能を示す。
これらのモデルは、衛星画像とオンラインのクラウドソーシングとソーシャルメディアで収集されたメタデータに基づいて、7つの独立して自由に利用可能な機能ソースを利用する。
我々のモデルでは、メタデータの組み合わせが農村部で最も富を予測し、画像ベースのモデルより優れていることが示されています。
その結果,地域平均と富の変動を再現し,その正の非単調な相関を正しく捉えた。
さらに、各国間でのモデル転送の能力と限界、およびデータレジェンシーや他のバイアスの影響を実証する。
我々の方法論は、政府やNGOがデータ可用性、都市化レベル、貧困のしきい値に基づいて情報的決定を行うのを助けるために、より透明で解釈可能なモデルを構築するためのオープンなツールを提供する。
関連論文リスト
- Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
オーバーヘッド画像は、コミュニティ情報が不足しているギャップを埋めるのに役立つ。
機械学習とコンピュータビジョンの最近の進歩により、画像データのパターンから素早く特徴を抽出し、検出することが可能になった。
本研究では, 人口密度, 中央値世帯所得, 教育達成率の2つのアプローチ, 教師付き畳み込みニューラルネットワークと半教師付きクラスタリングについて検討する。
論文 参考訳(メタデータ) (2023-09-28T19:30:26Z) - Fairness and representation in satellite-based poverty maps: Evidence of
urban-rural disparities and their impacts on downstream policy [5.456665139074406]
本稿では,都市部および農村部における衛星による貧困マッピングにおける表現の格差,予測誤差の体系的バイアス,公平性の懸念について検討する。
本研究は,衛星による貧困マップを現実の政策決定に利用する前に,注意深い誤りとバイアス分析の重要性を強調した。
論文 参考訳(メタデータ) (2023-05-02T21:07:35Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Learning Economic Indicators by Aggregating Multi-Level Geospatial
Information [20.0397537179667]
本研究は,複数レベルの地理的単位から観測される特徴を集約することで,経済指標を予測するための深層学習モデルを提案する。
我々の新しいマルチレベル学習モデルは、人口、購買力、エネルギー消費などの重要な指標を予測する上で、強いベースラインを著しく上回ります。
我々は、不平等と貧困に関する政策・社会科学研究において不可欠な第一歩である不平等を測定するためのマルチレベルモデルについて論じる。
論文 参考訳(メタデータ) (2022-05-03T13:05:39Z) - Interpretable Poverty Mapping using Social Media Data, Satellite Images,
and Geospatial Information [0.0]
本稿では、機械学習とアクセスしやすいデータソースを用いた貧困推定に対する解釈可能かつ費用効率のよいアプローチを提案する。
フィリピンの資産推定ではR2ドル0.66ドル、衛星画像では0.63ドルである。
論文 参考訳(メタデータ) (2020-11-27T05:24:53Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
本稿では,クラウドソースによるストリートレベルの画像から重要な生活指標を予測するための,安価でスケーラブルで解釈可能なアプローチを提案する。
全国的に代表される世帯調査で収集した地上データと比較することにより,貧困,人口,健康の指標を正確に予測する上でのアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2020-06-15T18:12:12Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
衛星画像に物体検出装置を適用することにより、局所レベルでの貧困を正確に予測するための解釈可能な計算手法を実証する。
対象物の重み付けを特徴として、ウガンダの村レベルの貧困を予測する0.539 Pearson's r2を達成し、既存の(解釈不可能でない)ベンチマークよりも31%改善した。
論文 参考訳(メタデータ) (2020-02-05T02:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。