Interpreting wealth distribution via poverty map inference using
multimodal data
- URL: http://arxiv.org/abs/2302.10793v2
- Date: Thu, 6 Apr 2023 12:45:33 GMT
- Title: Interpreting wealth distribution via poverty map inference using
multimodal data
- Authors: Lisette Esp\'in-Noboa, J\'anos Kert\'esz, and M\'arton Karsai
- Abstract summary: We propose a pipeline of machine learning models to infer the mean and standard deviation of wealth across multiple populated places.
These models leverage seven independent and freely available feature sources based on satellite images, and metadata collected via online crowd-sourcing and social media.
Our results recover the local mean and variation of wealth, and correctly capture the positive yet non-monotonous correlation between them.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Poverty maps are essential tools for governments and NGOs to track
socioeconomic changes and adequately allocate infrastructure and services in
places in need. Sensor and online crowd-sourced data combined with machine
learning methods have provided a recent breakthrough in poverty map inference.
However, these methods do not capture local wealth fluctuations, and are not
optimized to produce accountable results that guarantee accurate predictions to
all sub-populations. Here, we propose a pipeline of machine learning models to
infer the mean and standard deviation of wealth across multiple geographically
clustered populated places, and illustrate their performance in Sierra Leone
and Uganda. These models leverage seven independent and freely available
feature sources based on satellite images, and metadata collected via online
crowd-sourcing and social media. Our models show that combined metadata
features are the best predictors of wealth in rural areas, outperforming
image-based models, which are the best for predicting the highest wealth
quintiles. Our results recover the local mean and variation of wealth, and
correctly capture the positive yet non-monotonous correlation between them. We
further demonstrate the capabilities and limitations of model transfer across
countries and the effects of data recency and other biases. Our methodology
provides open tools to build towards more transparent and interpretable models
to help governments and NGOs to make informed decisions based on data
availability, urbanization level, and poverty thresholds.
Related papers
- Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
Overhead images can help fill in the gaps where community information is sparse.
Recent advancements in machine learning and computer vision have made it possible to quickly extract features from and detect patterns in image data.
In this work, we explore how well two approaches, a supervised convolutional neural network and semi-supervised clustering can estimate population density, median household income, and educational attainment.
arXiv Detail & Related papers (2023-09-28T19:30:26Z) - Fairness and representation in satellite-based poverty maps: Evidence of
urban-rural disparities and their impacts on downstream policy [5.456665139074406]
This paper investigates disparities in representation, systematic biases in prediction errors, and fairness concerns in satellite-based poverty mapping across urban and rural lines.
Our findings highlight the importance of careful error and bias analysis before using satellite-based poverty maps in real-world policy decisions.
arXiv Detail & Related papers (2023-05-02T21:07:35Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Learning Economic Indicators by Aggregating Multi-Level Geospatial
Information [20.0397537179667]
This research presents a deep learning model to predict economic indicators via aggregating traits observed from multiple levels of geographical units.
Our new multi-level learning model substantially outperforms strong baselines in predicting key indicators such as population, purchasing power, and energy consumption.
We discuss the multi-level model's implications for measuring inequality, which is the essential first step in policy and social science research on inequality and poverty.
arXiv Detail & Related papers (2022-05-03T13:05:39Z) - Interpretable Poverty Mapping using Social Media Data, Satellite Images,
and Geospatial Information [0.0]
We present a interpretable and cost-efficient approach to poverty estimation using machine learning and readily accessible data sources.
We achieve an $R2$ of 0.66 for wealth estimation in the Philippines, compared to 0.63 using satellite imagery.
arXiv Detail & Related papers (2020-11-27T05:24:53Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery.
By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health.
arXiv Detail & Related papers (2020-06-15T18:12:12Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
We demonstrate an interpretable computational framework to accurately predict poverty at a local level by applying object detectors to satellite images.
Using the weighted counts of objects as features, we achieve 0.539 Pearson's r2 in predicting village-level poverty in Uganda, a 31% improvement over existing (and less interpretable) benchmarks.
arXiv Detail & Related papers (2020-02-05T02:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.