Fairness and representation in satellite-based poverty maps: Evidence of
urban-rural disparities and their impacts on downstream policy
- URL: http://arxiv.org/abs/2305.01783v1
- Date: Tue, 2 May 2023 21:07:35 GMT
- Title: Fairness and representation in satellite-based poverty maps: Evidence of
urban-rural disparities and their impacts on downstream policy
- Authors: Emily Aiken, Esther Rolf, Joshua Blumenstock
- Abstract summary: This paper investigates disparities in representation, systematic biases in prediction errors, and fairness concerns in satellite-based poverty mapping across urban and rural lines.
Our findings highlight the importance of careful error and bias analysis before using satellite-based poverty maps in real-world policy decisions.
- Score: 5.456665139074406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Poverty maps derived from satellite imagery are increasingly used to inform
high-stakes policy decisions, such as the allocation of humanitarian aid and
the distribution of government resources. Such poverty maps are typically
constructed by training machine learning algorithms on a relatively modest
amount of ``ground truth" data from surveys, and then predicting poverty levels
in areas where imagery exists but surveys do not. Using survey and satellite
data from ten countries, this paper investigates disparities in representation,
systematic biases in prediction errors, and fairness concerns in
satellite-based poverty mapping across urban and rural lines, and shows how
these phenomena affect the validity of policies based on predicted maps. Our
findings highlight the importance of careful error and bias analysis before
using satellite-based poverty maps in real-world policy decisions.
Related papers
- The Impact of Differential Feature Under-reporting on Algorithmic Fairness [86.275300739926]
We present an analytically tractable model of differential feature under-reporting.
We then use to characterize the impact of this kind of data bias on algorithmic fairness.
Our results show that, in real world data settings, under-reporting typically leads to increasing disparities.
arXiv Detail & Related papers (2024-01-16T19:16:22Z) - Learning and Reasoning Multifaceted and Longitudinal Data for Poverty
Estimates and Livelihood Capabilities of Lagged Regions in Rural India [22.98110639419913]
The project aims to examine the poverty situation of rural India for the period of 1990-2022 based on the quality of life and livelihood indicators.
The project also intends to examine causation and longitudinal analysis to examine the reasons for poverty.
arXiv Detail & Related papers (2023-04-27T05:33:08Z) - Interpreting wealth distribution via poverty map inference using
multimodal data [0.0]
We propose a pipeline of machine learning models to infer the mean and standard deviation of wealth across multiple populated places.
These models leverage seven independent and freely available feature sources based on satellite images, and metadata collected via online crowd-sourcing and social media.
Our results recover the local mean and variation of wealth, and correctly capture the positive yet non-monotonous correlation between them.
arXiv Detail & Related papers (2023-02-17T11:35:44Z) - Graph-based Village Level Poverty Identification [52.12744462605759]
The development of the Web infrastructure and its modeling tools provides fresh approaches to identifying poor villages.
By modeling the village connections as a graph through the geographic distance, we show the correlation between village poverty status and its graph topological position.
We propose the first graph-based method to identify poor villages.
arXiv Detail & Related papers (2023-02-14T06:58:40Z) - Predicting Poverty Level from Satellite Imagery using Deep Neural
Networks [0.0]
I develop deep learning computer vision methods that can predict a region's poverty level from an overhead satellite image.
I explore the impact that data quantity and data augmentation have on the representational power and overall accuracy of the networks.
arXiv Detail & Related papers (2021-11-30T18:57:24Z) - Towards Measuring Bias in Image Classification [61.802949761385]
Convolutional Neural Networks (CNN) have become state-of-the-art for the main computer vision tasks.
However, due to the complex structure their decisions are hard to understand which limits their use in some context of the industrial world.
We present a systematic approach to uncover data bias by means of attribution maps.
arXiv Detail & Related papers (2021-07-01T10:50:39Z) - Interpretable Poverty Mapping using Social Media Data, Satellite Images,
and Geospatial Information [0.0]
We present a interpretable and cost-efficient approach to poverty estimation using machine learning and readily accessible data sources.
We achieve an $R2$ of 0.66 for wealth estimation in the Philippines, compared to 0.63 using satellite imagery.
arXiv Detail & Related papers (2020-11-27T05:24:53Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
We synthesize the growing literature that uses satellite imagery to understand sustainable development outcomes.
We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution of satellite imagery.
We review recent machine learning approaches to model-building in the context of scarce and noisy training data.
arXiv Detail & Related papers (2020-09-23T05:20:00Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery.
By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health.
arXiv Detail & Related papers (2020-06-15T18:12:12Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
We demonstrate an interpretable computational framework to accurately predict poverty at a local level by applying object detectors to satellite images.
Using the weighted counts of objects as features, we achieve 0.539 Pearson's r2 in predicting village-level poverty in Uganda, a 31% improvement over existing (and less interpretable) benchmarks.
arXiv Detail & Related papers (2020-02-05T02:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.