論文の概要: Valid Inference for Machine Learning Model Parameters
- arxiv url: http://arxiv.org/abs/2302.10840v1
- Date: Tue, 21 Feb 2023 17:46:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 14:06:21.918275
- Title: Valid Inference for Machine Learning Model Parameters
- Title(参考訳): 機械学習モデルパラメータの正当な推論
- Authors: Neil Dey, Jonathan P. Williams
- Abstract要約: 機械学習モデルの最適パラメータに対して有効な信頼セットを構築する。
この信頼度セットはブートストラップ技術を用いてよく近似できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The parameters of a machine learning model are typically learned by
minimizing a loss function on a set of training data. However, this can come
with the risk of overtraining; in order for the model to generalize well, it is
of great importance that we are able to find the optimal parameter for the
model on the entire population -- not only on the given training sample. In
this paper, we construct valid confidence sets for this optimal parameter of a
machine learning model, which can be generated using only the training data
without any knowledge of the population. We then show that studying the
distribution of this confidence set allows us to assign a notion of confidence
to arbitrary regions of the parameter space, and we demonstrate that this
distribution can be well-approximated using bootstrapping techniques.
- Abstract(参考訳): 機械学習モデルのパラメータは通常、トレーニングデータの集合上の損失関数を最小化することで学習される。
しかし、これはオーバートレーニングのリスクを伴う可能性がある。モデルが適切に一般化するためには、与えられたトレーニングサンプルだけでなく、人口全体のモデルに最適なパラメータを見つけることが非常に重要である。
本稿では,学習データのみを用いて,個体群を知らずに生成できる機械学習モデルの最適パラメータに対する妥当な信頼度セットを構築する。
次に、この信頼度集合の分布を研究することで、パラメータ空間の任意の領域に信頼度の概念を割り当てることができることを示し、この分布をブートストラップ法を用いて近似できることを示す。
関連論文リスト
- Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
本稿では,事前学習モデルを用いた新しい機械学習手法を提案する。
LoRAを利用して、モデルの中間機能を事前訓練された特徴と残像に分解する。
本手法は,保持集合上のゼロ残差を学習し,未学習集合上でシフト残差を学習することを目的としている。
論文 参考訳(メタデータ) (2024-11-13T08:56:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Distribution Learning and Its Application in Deep Learning [5.281849820329249]
本稿では,確率分布学習(PD Learning)と呼ばれる理論学習フレームワークを紹介する。
PD学習は確率分布の学習に重点を置いており、確率の単純さの中で確率変数としてモデル化される。
論文 参考訳(メタデータ) (2024-06-09T06:49:22Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Robustness of Machine Learning Models Beyond Adversarial Attacks [0.0]
本稿では,MLモデルのロバスト性を決定する上で,敵対的ロバスト性や近縁なメトリクスが必ずしも有効な指標ではないことを示す。
アプリケーション毎に個別に入力データの摂動をモデル化するフレキシブルなアプローチを提案する。
これは、現実の摂動が予測を変える可能性を計算する確率論的アプローチと組み合わせられる。
論文 参考訳(メタデータ) (2022-04-21T12:09:49Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Optimizing model-agnostic Random Subspace ensembles [5.680512932725364]
教師あり学習のためのモデルに依存しないアンサンブルアプローチを提案する。
提案手法は、ランダム部分空間アプローチのパラメトリックバージョンを用いてモデルのアンサンブルを学習することとを交互に行う。
シミュレーションおよび実世界のデータセット上で,予測と特徴ランキングの両面で,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-07T13:58:23Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
機械学習におけるブラックボックスモデルは、複雑な問題と高次元設定において優れた予測性能を示した。
透明性と解釈可能性の欠如は、重要な意思決定プロセスにおけるそのようなモデルの適用性を制限します。
半パラメトリック統計学のアイデアを用いて予測モデルにおける解釈可能性と性能のトレードオフを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T16:38:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。