Quench dynamics of the Schwinger model via variational quantum
algorithms
- URL: http://arxiv.org/abs/2302.10933v1
- Date: Tue, 21 Feb 2023 19:00:01 GMT
- Title: Quench dynamics of the Schwinger model via variational quantum
algorithms
- Authors: Lento Nagano, Aniruddha Bapat, Christian W. Bauer
- Abstract summary: We simulate quench dynamics in the presence of an external electric field.
We use a variational quantum eigensolver to obtain the ground state of the system.
We perform real-time evolution under an external field via a fixed-depth, parameterized circuit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the real-time dynamics of the $(1+1)$-dimensional U(1) gauge
theory known as the Schwinger model via variational quantum algorithms.
Specifically, we simulate quench dynamics in the presence of an external
electric field. First, we use a variational quantum eigensolver to obtain the
ground state of the system in the absence of an external field. With this as
the initial state, we perform real-time evolution under an external field via a
fixed-depth, parameterized circuit whose parameters are updated using
McLachlan's variational principle. We use the same Ansatz for initial state
preparation and time evolution, by which we are able to reduce the overall
circuit depth. We test our method with a classical simulator and confirm that
the results agree well with exact diagonalization.
Related papers
- Simulating Markovian open quantum systems using higher-order series
expansion [1.713291434132985]
We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems.
Our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding.
arXiv Detail & Related papers (2022-12-05T06:02:50Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Algorithm for initializing a generalized fermionic Gaussian state on a
quantum computer [0.0]
We present explicit expressions for the central piece of a variational method developed by Shi et al.
We derive iterative analytical expressions for the evaluation of expectation values of products of fermionic creation and subroutine operators.
We present a simple gradient-descent-based algorithm that can be used as an optimization in combination with imaginary time evolution.
arXiv Detail & Related papers (2021-05-27T10:31:45Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Adiabatic Spectroscopy and a Variational Quantum Adiabatic Algorithm [0.7734726150561088]
We propose a method to obtain information about the spectral profile of the adiabatic evolution.
We present the concept of a variational quantum adiabatic algorithm (VQAA) for optimized adiabatic paths.
arXiv Detail & Related papers (2021-03-01T19:00:00Z) - Adaptive Variational Quantum Imaginary Time Evolution Approach for
Ground State Preparation [3.9111580372138834]
An adaptive variational quantum imaginary time evolution (AVQITE) approach is introduced.
It yields efficient representations of ground states for interacting Hamiltonians on near-term quantum computers.
arXiv Detail & Related papers (2021-02-02T15:17:03Z) - Adaptive Variational Quantum Dynamics Simulations [3.629716738568079]
We propose a general-purpose, self-adaptive approach to construct variational wavefunction ans"atze for highly accurate quantum dynamics simulations.
We apply this approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model.
We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum computing devices will be made possible through the AVQDS framework.
arXiv Detail & Related papers (2020-11-01T20:21:57Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.