Adaptive Variational Quantum Dynamics Simulations
- URL: http://arxiv.org/abs/2011.00622v3
- Date: Fri, 11 Jun 2021 16:27:27 GMT
- Title: Adaptive Variational Quantum Dynamics Simulations
- Authors: Yong-Xin Yao, Niladri Gomes, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho,
Thomas Iadecola, and Peter P. Orth
- Abstract summary: We propose a general-purpose, self-adaptive approach to construct variational wavefunction ans"atze for highly accurate quantum dynamics simulations.
We apply this approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model.
We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum computing devices will be made possible through the AVQDS framework.
- Score: 3.629716738568079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a general-purpose, self-adaptive approach to construct variational
wavefunction ans\"atze for highly accurate quantum dynamics simulations based
on McLachlan's variational principle. The key idea is to dynamically expand the
variational ansatz along the time-evolution path such that the ``McLachlan
distance'', which is a measure of the simulation accuracy, remains below a set
threshold. We apply this adaptive variational quantum dynamics simulation
(AVQDS) approach to the integrable Lieb-Schultz-Mattis spin chain and the
nonintegrable mixed-field Ising model, where it captures both finite-rate and
sudden post-quench dynamics with high fidelity. The AVQDS quantum circuits that
prepare the time-evolved state are much shallower than those obtained from
first-order Trotterization and contain up to two orders of magnitude fewer CNOT
gate operations. We envision that a wide range of dynamical simulations of
quantum many-body systems on near-term quantum computing devices will be made
possible through the AVQDS framework.
Related papers
- Quantum Simulation of Open Quantum Dynamics via Non-Markovian Quantum State Diffusion [2.9413085575648235]
Quantum simulation of non-Markovian open quantum dynamics is essential but challenging for standard quantum computers.
We introduce a hybrid quantum-classical algorithm designed for simulating dissipative dynamics in system with non-Markovian environment.
arXiv Detail & Related papers (2024-04-16T15:31:25Z) - Variational Quantum Algorithms for Simulation of Lindblad Dynamics [0.0]
We introduce a variational hybrid classical-quantum algorithm to simulate the Lindblad master equation and its adjoint for time-evolving Markovian open quantum systems and quantum observables.
We design and optimize low-depth variational quantum circuits that efficiently capture the unitary and non-unitary dynamics of the solutions.
arXiv Detail & Related papers (2023-05-04T13:25:44Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Accelerated variational algorithms for digital quantum simulation of
many-body ground states [0.0]
One of the key applications for the quantum simulators is to emulate the ground state of many-body systems.
variational methods have also been proposed and realized in quantum simulators for emulating the ground state of many-body systems.
arXiv Detail & Related papers (2020-06-16T18:01:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.