論文の概要: MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
- arxiv url: http://arxiv.org/abs/2302.10980v3
- Date: Thu, 20 Jul 2023 01:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 18:27:57.159132
- Title: MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
- Title(参考訳): MultiRobustBench: 複数の攻撃に対するロバスト性のベンチマーク
- Authors: Sihui Dai, Saeed Mahloujifar, Chong Xiang, Vikash Sehwag, Pin-Yu Chen,
Prateek Mittal
- Abstract要約: 機械学習(ML)モデルに対するマルチアタックを検討するための,最初の統一フレームワークを提案する。
我々のフレームワークは、テストタイムの敵について異なるレベルの学習者の知識をモデル化することができる。
9種類の攻撃に対して16種類の防御モデルの有効性を評価した。
- 参考スコア(独自算出の注目度): 86.70417016955459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The bulk of existing research in defending against adversarial examples
focuses on defending against a single (typically bounded Lp-norm) attack, but
for a practical setting, machine learning (ML) models should be robust to a
wide variety of attacks. In this paper, we present the first unified framework
for considering multiple attacks against ML models. Our framework is able to
model different levels of learner's knowledge about the test-time adversary,
allowing us to model robustness against unforeseen attacks and robustness
against unions of attacks. Using our framework, we present the first
leaderboard, MultiRobustBench, for benchmarking multiattack evaluation which
captures performance across attack types and attack strengths. We evaluate the
performance of 16 defended models for robustness against a set of 9 different
attack types, including Lp-based threat models, spatial transformations, and
color changes, at 20 different attack strengths (180 attacks total).
Additionally, we analyze the state of current defenses against multiple
attacks. Our analysis shows that while existing defenses have made progress in
terms of average robustness across the set of attacks used, robustness against
the worst-case attack is still a big open problem as all existing models
perform worse than random guessing.
- Abstract(参考訳): 敵の例に対する防御に関する既存の研究の多くは、単一の(通常は境界付けられたLp-ノルム)攻撃に対する防御に焦点を当てているが、実際は機械学習(ML)モデルは様々な攻撃に対して堅牢であるべきである。
本稿では,MLモデルに対する多重攻撃を考慮した最初の統一フレームワークを提案する。
我々のフレームワークは、テスト時の敵に対する学習者の知識の異なるレベルをモデル化することができ、予期せぬ攻撃に対する頑健さと攻撃の結合に対する堅牢さをモデル化することができる。
このフレームワークを用いて,攻撃型と攻撃強度をまたいだ性能を捉えるマルチアタック評価のベンチマークを行うための,最初のリーダボードであるmultirobustbenchを提案する。
我々は,lpベースの脅威モデル,空間的変換,色変化を含む9種類の攻撃タイプに対するロバスト性に対する16種類の防御モデルの性能を20種類の攻撃強度(合計180攻撃)で評価した。
さらに、複数の攻撃に対する現在の防御状況を分析する。
我々の分析によると、既存の防御は、使用される攻撃セット全体の平均ロバストネスを進歩させたが、最悪の攻撃に対するロバストネスは依然として大きなオープンな問題であり、既存のすべてのモデルがランダムな推測よりも悪化している。
関連論文リスト
- AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples [26.37278338032268]
アドリシャルな例は、通常、勾配ベースの攻撃に最適化される。
それぞれ異なる実験装置を用いて前任者を上回る性能を発揮する。
これは過度に最適化され、偏見のある評価を提供する。
論文 参考訳(メタデータ) (2024-04-30T11:19:05Z) - BruSLeAttack: A Query-Efficient Score-Based Black-Box Sparse Adversarial Attack [22.408968332454062]
モデルクエリに対するスコアベースの応答を単純に観察することで、スパース対逆サンプルを生成するという、独特であまりよく理解されていない問題について検討する。
この問題に対するBruSLeAttackアルゴリズムを開発した。
私たちの作業は、モデル脆弱性の迅速な評価を促進し、デプロイされたシステムの安全性、セキュリティ、信頼性に対する警戒を高めます。
論文 参考訳(メタデータ) (2024-04-08T08:59:26Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Versatile Defense Against Adversarial Attacks on Image Recognition [2.9980620769521513]
現実の環境での敵の攻撃に対する防御は、アンチウイルスソフトの動作方法と比較することができる。
画像から画像への翻訳をベースとした防御手法が実現可能であると考えられる。
訓練されたモデルは、分類精度をほぼゼロから平均86%に改善した。
論文 参考訳(メタデータ) (2024-03-13T01:48:01Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
敵の例は長い間、機械学習モデルに対する真の脅威と考えられてきた。
我々は、従来のホワイトボックスやブラックボックスの脅威モデルを超えた、配置ベースの防衛パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-09T20:07:13Z) - OpenAttack: An Open-source Textual Adversarial Attack Toolkit [73.22185718706602]
本稿では,これらの問題を解決するために,OpenAttackというオープンソースのテキスト逆攻撃ツールキットを提案する。
OpenAttackには、すべての攻撃タイプ、多言語性、並列処理をサポートする独自の長所がある。
論文 参考訳(メタデータ) (2020-09-19T09:02:56Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。