A spin-energy operator inequality for Heisenberg-coupled qubits
- URL: http://arxiv.org/abs/2302.11267v1
- Date: Wed, 22 Feb 2023 10:29:00 GMT
- Title: A spin-energy operator inequality for Heisenberg-coupled qubits
- Authors: Daniel Ranard and C. Jess Riedel
- Abstract summary: We obtain explicit constants in the special case of a cubic lattice.
We briefly discuss the interpretation of this bound in terms of low-energy, approximately non-interacting magnons in spin wave theory.
- Score: 2.588973722689844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We slightly strengthen an operator inequality identified by Correggi et al.
that lower bounds the energy of a Heisenberg-coupled graph of $s=1/2$ spins
using the total spin. In particular, $\Delta H \ge C \Delta\vec{S}^2$ for a
graph-dependent constant $C$, where $\Delta H$ is the energy above the ground
state and $\Delta\vec{S}^2$ is the amount by which the square of the total spin
$\vec{S} = \sum_i \vec{\sigma}_i/2$ falls below its maximum possible value. We
obtain explicit constants in the special case of a cubic lattice. We briefly
discuss the interpretation of this bound in terms of low-energy, approximately
non-interacting magnons in spin wave theory and contrast it with another
inequality found by B\"arwinkel et al.
Related papers
- Quantum charges of harmonic oscillators [55.2480439325792]
We show that the energy eigenfunctions $psi_n$ with $nge 1$ are complex coordinates on orbifolds $mathbbR2/mathbbZ_n$.
We also discuss "antioscillators" with opposite quantum charges and the same positive energy.
arXiv Detail & Related papers (2024-04-02T09:16:18Z) - Vacuum Force and Confinement [65.268245109828]
We show that confinement of quarks and gluons can be explained by their interaction with the vacuum Abelian gauge field $A_sfvac$.
arXiv Detail & Related papers (2024-02-09T13:42:34Z) - The effect of a $\delta$ distribution potential on a quantum mechanical
particle in a box [0.0]
We obtain the limit of the eigenfunctions of the time independent Schr"odinger equation as $alphanearrow+infty$ and as $alphasearrow-infty$.
We show that each one of these has an energy that coincides with the energy of a certain limiting eigenfunction obtained by taking $|alpha|toinfty$.
arXiv Detail & Related papers (2023-11-05T09:56:48Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Average pure-state entanglement entropy in spin systems with SU(2)
symmetry [0.0]
We study the effect that the SU(2) symmetry, and the rich Hilbert space structure that it generates in lattice spin systems, has on the average entanglement entropy of local Hamiltonians and of random pure states.
We provide numerical evidence that $s_A$ is smaller in highly excited eigenstates of integrable interacting Hamiltonians.
In the context of Hamiltonian eigenstates we consider spins $mathfrakj=frac12$ and $1$, while for our calculations based on random pure states we focus on the spin $mathfrakj=frac12$ case
arXiv Detail & Related papers (2023-05-18T18:00:00Z) - Rotational Symmetry and Gauge Invariant Degeneracies on 2D
Noncommutative Plane [0.0]
We find that the energy levels and states of the system are unique and hence, same goes to the degeneracies as well.
The degenerate energy levels can always be found if $theta$ is proportional to the ratio between $hbar$ and $momega$.
arXiv Detail & Related papers (2021-12-16T07:03:16Z) - Power-like potentials: from the Bohr-Sommerfeld energies to exact ones [77.34726150561087]
Bohr-Sommerfeld Energies (BSE) extracted explicitly from the Bohr-Sommerfeld quantization condition are compared with the exact energies.
For physically important cases $m=1,4,6$ for the $100$th excited state BSE coincide with exact ones in 5-6 figures.
arXiv Detail & Related papers (2021-07-31T21:37:50Z) - Ultracold spin-balanced fermionic quantum liquids with renormalized
$P$-wave interactions [0.0]
We consider a spin-balanced degenerate gas of spin-1/2 fermions governed by low-energy $P$-wave interactions.
The energy per particle $barcalE$ in the many-body system is calculated by resumming the ladder diagrams.
arXiv Detail & Related papers (2021-07-16T18:00:01Z) - Truncation effects in the charge representation of the O(2) model [3.770141864638074]
We study the quantum phase transition in the charge representation with a truncation to spin $S$.
The exponential convergence of the phase-transition point is studied in both Lagrangian and Hamiltonian formulations.
arXiv Detail & Related papers (2021-04-13T16:37:21Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.