Average pure-state entanglement entropy in spin systems with SU(2)
symmetry
- URL: http://arxiv.org/abs/2305.11211v3
- Date: Fri, 1 Dec 2023 18:28:20 GMT
- Title: Average pure-state entanglement entropy in spin systems with SU(2)
symmetry
- Authors: Rohit Patil, Lucas Hackl, George R. Fagan, Marcos Rigol
- Abstract summary: We study the effect that the SU(2) symmetry, and the rich Hilbert space structure that it generates in lattice spin systems, has on the average entanglement entropy of local Hamiltonians and of random pure states.
We provide numerical evidence that $s_A$ is smaller in highly excited eigenstates of integrable interacting Hamiltonians.
In the context of Hamiltonian eigenstates we consider spins $mathfrakj=frac12$ and $1$, while for our calculations based on random pure states we focus on the spin $mathfrakj=frac12$ case
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the effect that the SU(2) symmetry, and the rich Hilbert space
structure that it generates in lattice spin systems, has on the average
entanglement entropy of highly excited eigenstates of local Hamiltonians and of
random pure states. Focusing on the zero total magnetization sector ($J_z=0$)
for different fixed total spin $J$, we argue that the average entanglement
entropy of highly excited eigenstates of quantum-chaotic Hamiltonians and of
random pure states has a leading volume-law term whose coefficient $s_A$
depends on the spin density $j=J/(\mathfrak{j}L)$, with $s_A(j \rightarrow
0)=\ln (2\mathfrak{j}+1)$ and $s_A(j \rightarrow 1)=0$, where $\mathfrak{j}$ is
the microscopic spin. We provide numerical evidence that $s_A$ is smaller in
highly excited eigenstates of integrable interacting Hamiltonians, which lends
support to the expectation that the average eigenstate entanglement entropy can
be used as a diagnostic of quantum chaos and integrability for Hamiltonians
with non-Abelian symmetries. In the context of Hamiltonian eigenstates we
consider spins $\mathfrak{j}=\frac12$ and $1$, while for our calculations based
on random pure states we focus on the spin $\mathfrak{j}=\frac12$ case.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - On stability of k-local quantum phases of matter [0.4999814847776097]
We analyze the stability of the energy gap to Euclids for Hamiltonians corresponding to general quantum low-density parity-check codes.
We discuss implications for the third law of thermodynamics, as $k$-local Hamiltonians can have extensive zero-temperature entropy.
arXiv Detail & Related papers (2024-05-29T18:00:20Z) - Entanglement Entropy of Free Fermions with a Random Matrix as a One-Body Hamiltonian [0.0]
We consider a quantum system of large size $N$ and its subsystem of size $L$.
We show that in this case, the entanglement entropy obeys the volume law known for systems with short-ranged hopping.
arXiv Detail & Related papers (2024-05-18T17:20:23Z) - Typical entanglement entropy in systems with particle-number
conservation [3.9617282900065853]
We calculate the typical bipartite entanglement entropy $langle S_Arangle_N$ in systems containing indistinguishable particles of any kind.
We provide evidence that our results describe the entanglement entropy of highly excited eigenstates of quantum-chaotic spin and boson systems.
arXiv Detail & Related papers (2023-10-30T18:00:00Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Average entanglement entropy of midspectrum eigenstates of
quantum-chaotic interacting Hamiltonians [0.0]
We show that the magnitude of the negative $O(1)$ correction is only slightly greater than the one predicted for random pure states.
We derive a simple expression that describes the numerically observed $nu$ dependence of the $O(1)$ deviation from the prediction for random pure states.
arXiv Detail & Related papers (2023-03-23T18:00:02Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Sublinear quantum algorithms for estimating von Neumann entropy [18.30551855632791]
We study the problem of obtaining estimates to within a multiplicative factor $gamma>1$ of the Shannon entropy of probability distributions and the von Neumann entropy of mixed quantum states.
We work with the quantum purified query access model, which can handle both classical probability distributions and mixed quantum states, and is the most general input model considered in the literature.
arXiv Detail & Related papers (2021-11-22T12:00:45Z) - Universal Entanglement Transitions of Free Fermions with Long-range
Non-unitary Dynamics [16.533265279392772]
Non-unitary evolution can give rise to novel steady states classified by their entanglement properties.
In this work, we aim to understand its interplay with long-range hopping that decays with $r-alpha$ in free-fermion systems.
arXiv Detail & Related papers (2021-05-19T02:52:48Z) - Simulating non-Hermitian dynamics of a multi-spin quantum system and an
emergent central spin model [0.0]
It is possible to simulate the dynamics of a single spin-$1/2$ ($mathsfPT$ symmetric) system by embedding it into a subspace of a larger Hilbert space with unitary dynamics.
We visualize it as a strongly correlated central spin model with the additional spin-$1/2$ playing the role of central spin.
arXiv Detail & Related papers (2020-12-24T19:00:11Z) - A map between time-dependent and time-independent quantum many-body
Hamiltonians [23.87373187143897]
Given a time-independent Hamiltonian $widetilde H$, one can construct a time-dependent Hamiltonian $H_t$ by means of the gauge transformation $H_t=U_t widetilde H, Udagger_t-i, U_t, partial_t U_tdagger$.
Here $U_t$ is the unitary transformation that relates the solutions of the corresponding Schrodinger equations.
arXiv Detail & Related papers (2020-09-29T08:54:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.