Precoding-oriented Massive MIMO CSI Feedback Design
- URL: http://arxiv.org/abs/2302.11526v1
- Date: Wed, 22 Feb 2023 18:04:02 GMT
- Title: Precoding-oriented Massive MIMO CSI Feedback Design
- Authors: Fabrizio Carpi and Sivarama Venkatesan and Jinfeng Du and Harish
Viswanathan and Siddharth Garg and Elza Erkip
- Abstract summary: Downlink massive multiple-input multiple-output (MIMO) precoding algorithms in frequency division duplexing (FDD) systems rely on accurate channel state information (CSI) feedback from users.
In this paper, we analyze the tradeoff between the CSI feedback overhead and the performance achieved by the users in systems in terms of achievable rate.
We employ a deep learning-based approach to design the end-to-end precoding-oriented feedback architecture.
- Score: 18.61287505809249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Downlink massive multiple-input multiple-output (MIMO) precoding algorithms
in frequency division duplexing (FDD) systems rely on accurate channel state
information (CSI) feedback from users. In this paper, we analyze the tradeoff
between the CSI feedback overhead and the performance achieved by the users in
systems in terms of achievable rate. The final goal of the proposed system is
to determine the beamforming information (i.e., precoding) from channel
realizations. We employ a deep learning-based approach to design the end-to-end
precoding-oriented feedback architecture, that includes learned pilots, users'
compressors, and base station processing. We propose a loss function that
maximizes the sum of achievable rates with minimal feedback overhead.
Simulation results show that our approach outperforms previous
precoding-oriented methods, and provides more efficient solutions with respect
to conventional methods that separate the CSI compression blocks from the
precoding processing.
Related papers
- A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
arXiv Detail & Related papers (2023-12-07T06:01:47Z) - A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access [53.191806757701215]
We propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT)
By exploiting the overfitting of the compact neural network to maximize the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need for any other training data while minimizing the total running time.
Numerical results reveal that the meta-learning based solution achieves similar ASR performance to conventional precoder optimization in medium-scale scenarios, and significantly outperforms sub-optimal low complexity precoder algorithms in the large-scale
arXiv Detail & Related papers (2023-07-17T20:31:41Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning for Multi-User MIMO Systems: Joint Design of Pilot,
Limited Feedback, and Precoding [28.53535169241923]
This paper studies an end-to-end design of downlink MU-MIMO systems which include pilot sequences, limited feedback, and precoding.
We propose a novel deep learning (DL) framework which jointly optimize the feedback information generation at users and the precoder design at a base station.
arXiv Detail & Related papers (2022-09-21T13:02:06Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead.
The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy.
arXiv Detail & Related papers (2022-06-29T03:28:57Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
We propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the base station.
Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook.
arXiv Detail & Related papers (2022-02-02T19:04:49Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.