A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems
- URL: http://arxiv.org/abs/2312.04062v2
- Date: Fri, 21 Jun 2024 14:51:24 GMT
- Title: A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems
- Authors: Binggui Zhou, Xi Yang, Jintao Wang, Shaodan Ma, Feifei Gao, Guanghua Yang,
- Abstract summary: Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
- Score: 45.22132581755417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems with orthogonal frequency-division multiplexing (OFDM). However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers and leads to extremely high CSI feedback overhead. Deep learning-based methods have emerged for compressing CSI but these methods generally require substantial collected samples and thus pose practical challenges. Moreover, existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback. To address these issues, we propose a low-overhead Incorporation-Extrapolation based Few-Shot CSI feedback Framework (IEFSF) for massive MIMO systems. An incorporation-extrapolation scheme for eigenvector-based CSI feedback is proposed to reduce the feedback overhead. Then, to alleviate the necessity of extensive collected samples and enable few-shot CSI feedback, we further propose a knowledge-driven data augmentation (KDDA) method and an artificial intelligence-generated content (AIGC) -based data augmentation method by exploiting the domain knowledge of wireless channels and by exploiting a novel generative model, respectively. Experimental results based on the DeepMIMO dataset demonstrate that the proposed IEFSF significantly reduces CSI feedback overhead by 64 times compared with existing methods while maintaining higher feedback accuracy using only several hundred collected samples.
Related papers
- ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Enhancing Deep Learning Performance of Massive MIMO CSI Feedback [7.63185216082836]
We propose a jigsaw puzzles aided training strategy (JPTS) to enhance the deep learning-based Massive multiple-input multiple-output (MIMO) CSI feedback approaches.
Experimental results show that by adopting this training strategy, the accuracy can be boosted by 12.07% and 7.01% on average in indoor and outdoor environments.
arXiv Detail & Related papers (2022-08-24T07:08:31Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead.
The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy.
arXiv Detail & Related papers (2022-06-29T03:28:57Z) - Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI
Feedback [2.6831842796906393]
This paper proposes a deep learning scheme to improve the 1-bit compressed sensing-based superimposed CSI feedback.
The proposed scheme improves the recovery accuracy of the UL-US and downlink CSI with lower processing delay.
arXiv Detail & Related papers (2022-03-13T09:33:53Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
We propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the base station.
Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook.
arXiv Detail & Related papers (2022-02-02T19:04:49Z) - CSI Feedback with Model-Driven Deep Learning of Massive MIMO Systems [0.0]
We propose a two stages low rank (TSLR) CSI feedback scheme to reduce the feedback overhead based on model-driven deep learning.
Besides, we design a deep iterative neural network, named FISTA-Net, by unfolding the fast iterative shrinkage thresholding algorithm (FISTA) to achieve more efficient CSI feedback.
arXiv Detail & Related papers (2021-12-13T03:50:43Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.